File size: 45,560 Bytes
9afb5c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 |
# --------------------------------------------------------------
# IGCSE Science Platform โ Chemistry & Biology with Deep Understanding Focus
# Models: Gemini 2.5 (Primary) โ Cohere โ Z.ai โ MiniMax (Fallbacks)
# --------------------------------------------------------------
import os
import json
from datetime import datetime
import gradio as gr
import PyPDF2
import time
import re
from PIL import Image
import io
# ---------- 1. Configure ALL AI Systems ----------
# Gemini (Primary)
try:
import google.generativeai as genai
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
gemini_model = genai.GenerativeModel('gemini-2.5-pro')
print("โ
Gemini AI initialized successfully (PRIMARY)")
except Exception as e:
print(f"โ Error initializing Gemini: {e}")
gemini_model = None
# Cohere (Secondary)
try:
import cohere
cohere_client = cohere.Client(os.getenv("COHERE_API_KEY"))
print("โ
Cohere initialized successfully (SECONDARY)")
except Exception as e:
print(f"โ Error initializing Cohere: {e}")
cohere_client = None
# Z.ai (Tertiary)
try:
from huggingface_hub import InferenceClient
zai_client = InferenceClient(
provider="novita",
api_key=os.environ.get("HF_TOKEN"),
)
print("โ
Z.ai GLM-4.6 initialized successfully (TERTIARY)")
except Exception as e:
print(f"โ Error initializing Z.ai: {e}")
zai_client = None
# MiniMax (Final Fallback)
try:
minimax_client = InferenceClient(
provider="novita",
api_key=os.environ.get("HF_TOKEN"),
)
print("โ
MiniMax AI initialized successfully (FINAL FALLBACK)")
except Exception as e:
print(f"โ Error initializing MiniMax: {e}")
minimax_client = None
# ---------- 2. Unified AI Function with Smart Fallback ----------
def ask_ai(prompt, temperature=0.7, max_retries=2):
"""
Try models in order: Gemini โ Cohere โ Z.ai โ MiniMax
Returns: (response_text, source_name)
"""
last_error = None
# Try Gemini first (Primary)
if gemini_model:
for attempt in range(max_retries):
try:
response = gemini_model.generate_content(
prompt,
generation_config=genai.types.GenerationConfig(
temperature=temperature,
)
)
return response.text, "gemini"
except Exception as e:
last_error = e
print(f"โ Gemini attempt {attempt+1} failed: {str(e)}")
if attempt < max_retries - 1:
time.sleep(1)
# Try Cohere (Secondary)
if cohere_client:
for attempt in range(max_retries):
try:
response = cohere_client.chat(
model="command-r-plus-08-2024",
message=prompt,
temperature=temperature
)
return response.text, "cohere"
except Exception as e:
last_error = e
print(f"โ Cohere attempt {attempt+1} failed: {str(e)}")
if attempt < max_retries - 1:
time.sleep(1)
# Try Z.ai (Tertiary)
if zai_client:
for attempt in range(max_retries):
try:
completion = zai_client.chat.completions.create(
model="zai-org/GLM-4.6",
messages=[{"role": "user", "content": prompt}],
temperature=temperature
)
return completion.choices[0].message.content, "zai"
except Exception as e:
last_error = e
print(f"โ Z.ai attempt {attempt+1} failed: {str(e)}")
if attempt < max_retries - 1:
time.sleep(1)
# Try MiniMax (Final Fallback)
if minimax_client:
try:
completion = minimax_client.chat.completions.create(
model="MiniMaxAI/MiniMax-M2",
messages=[{"role": "user", "content": prompt}],
temperature=temperature
)
return completion.choices[0].message.content, "minimax"
except Exception as e:
last_error = e
print(f"โ MiniMax fallback failed: {str(e)}")
# All failed
error_msg = f"โ Error: All AI services failed. Last error: {str(last_error)}"
return error_msg, "error"
# ---------- 3. Enhanced Global Storage ----------
papers_storage = []
pdf_content_storage = {}
insert_storage = {}
questions_index = []
ADMIN_PASSWORD = "@mikaelJ46"
# ---------- 4. Comprehensive Topic Lists ----------
chemistry_topics = [
# Principles of Chemistry
"States of Matter", "Atoms, Elements & Compounds", "Mixtures & Separation Techniques",
"Atomic Structure", "Electronic Configuration", "Periodic Table",
"Chemical Bonding: Ionic", "Chemical Bonding: Covalent", "Chemical Bonding: Metallic",
"Structure & Properties of Materials", "Nanoparticles",
# Inorganic Chemistry
"Group 1: Alkali Metals", "Group 7: Halogens", "Group 0: Noble Gases",
"Transition Metals", "Reactivity Series", "Extraction of Metals",
"Corrosion & Rusting", "Alloys",
# Physical Chemistry
"Chemical Reactions", "Exothermic & Endothermic Reactions", "Energy Changes",
"Rates of Reaction", "Catalysts", "Reversible Reactions", "Equilibrium",
"Redox Reactions", "Electrolysis", "Electrochemistry",
# Acids, Bases & Salts
"Acids & Alkalis", "pH Scale", "Neutralization", "Making Salts",
"Titrations", "Strong & Weak Acids",
# Organic Chemistry
"Hydrocarbons: Alkanes", "Hydrocarbons: Alkenes", "Crude Oil & Fractional Distillation",
"Polymers", "Alcohols", "Carboxylic Acids", "Organic Synthesis",
# Chemistry of the Environment
"Air Composition", "Air Pollution", "Greenhouse Effect & Climate Change",
"Water Treatment", "Sustainable Chemistry",
# Quantitative Chemistry
"Relative Formula Mass", "Moles & Molar Mass", "Empirical & Molecular Formulae",
"Reacting Masses", "Limiting Reactants", "Percentage Yield",
"Gas Volumes", "Concentration Calculations",
# Practical Skills
"Laboratory Safety", "Experimental Techniques", "Analysis & Evaluation"
]
biology_topics = [
# Cell Biology
"Cell Structure & Function", "Specialised Cells", "Microscopy",
"Cell Division: Mitosis", "Cell Division: Meiosis", "Stem Cells",
"Diffusion", "Osmosis", "Active Transport",
# Organisation
"Organisation of Organisms", "Enzymes", "Digestive System",
"Circulatory System: Heart", "Circulatory System: Blood Vessels", "Blood Components",
"Respiratory System", "Gas Exchange", "Breathing Mechanism",
# Infection & Response
"Communicable Diseases", "Pathogens: Bacteria & Viruses", "Disease Prevention",
"Immune System", "Vaccination", "Antibiotics & Painkillers",
"Developing New Medicines", "Monoclonal Antibodies",
# Bioenergetics
"Photosynthesis", "Factors Affecting Photosynthesis", "Uses of Glucose",
"Respiration: Aerobic", "Respiration: Anaerobic", "Metabolism",
# Homeostasis & Response
"Homeostasis Principles", "Nervous System", "Reflex Actions", "Brain Structure",
"Eye Structure & Function", "Body Temperature Control",
"Endocrine System", "Hormones", "Blood Glucose Regulation",
"Diabetes", "Water & Nitrogen Balance", "Kidneys & Dialysis",
# Inheritance, Variation & Evolution
"DNA Structure", "Protein Synthesis", "Genetic Inheritance",
"Inherited Disorders", "Sex Determination", "Genetic Diagrams",
"Variation", "Evolution", "Natural Selection", "Selective Breeding",
"Genetic Engineering", "Cloning", "Classification",
# Ecology
"Ecosystems", "Food Chains & Webs", "Energy Transfer",
"Nutrient Cycles: Carbon", "Nutrient Cycles: Water", "Nutrient Cycles: Nitrogen",
"Biodiversity", "Habitat Loss", "Conservation",
"Population Dynamics", "Competition", "Adaptations",
"Waste Management", "Pollution", "Global Warming Impact",
"Deforestation", "Sustainable Development",
# Practical Skills
"Scientific Method", "Variables & Controls", "Data Analysis",
"Biological Techniques", "Field Studies"
]
# ---------- 5. Enhanced PDF Processing ----------
def extract_text_from_pdf(pdf_file):
"""Extract text from uploaded PDF file"""
if pdf_file is None:
return ""
try:
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text() + "\n"
return text
except Exception as e:
return f"Error extracting PDF: {e}"
def identify_paper_details(text, filename):
"""Use AI to identify paper year, series, variant, and subject from content"""
sample_text = text[:2000] if len(text) > 2000 else text
prompt = f"""Analyze this IGCSE science past paper and identify its details.
Filename: {filename}
Paper Text Sample:
{sample_text}
Identify and return ONLY a JSON object with:
- subject: "Chemistry" or "Biology"
- year: The year (e.g., "2023", "2022")
- series: The exam series (e.g., "June", "November", "May/June", "October/November")
- variant: The paper variant (e.g., "1", "2", "3" or "11", "12", "21", "22")
- paper_number: The paper number (e.g., "1", "2", "3", "4", "6")
- syllabus_code: If visible (e.g., "0620" for Chemistry, "0610" for Biology)
Look for clues like "Cambridge IGCSE", subject codes, dates, paper numbers.
Return ONLY valid JSON (no markdown):
{{"subject": "...", "year": "...", "series": "...", "variant": "...", "paper_number": "...", "syllabus_code": "..."}}"""
try:
response, _ = ask_ai(prompt, temperature=0.1)
clean_txt = response.replace("```json", "").replace("```", "").strip()
details = json.loads(clean_txt)
return details
except Exception as e:
print(f"Error identifying paper details: {e}")
return parse_filename_for_details(filename)
def parse_filename_for_details(filename):
"""Fallback: Parse filename for paper details"""
details = {
"subject": "Unknown",
"year": "Unknown",
"series": "Unknown",
"variant": "Unknown",
"paper_number": "Unknown",
"syllabus_code": "Unknown"
}
# Extract year
year_match = re.search(r'(20\d{2})|(\d{2}(?=_[wsmj]|[WS]))', filename)
if year_match:
year = year_match.group(1) or ("20" + year_match.group(2))
details["year"] = year
# Extract series
if re.search(r'[Jj]une?|[Mm]ay[_/-]?[Jj]une?|mj|MJ', filename):
details["series"] = "May/June"
elif re.search(r'[Nn]ov(ember)?|[Oo]ct(ober)?|ON', filename):
details["series"] = "October/November"
elif re.search(r'[Mm]ar(ch)?|[Ff]eb(ruary)?|FM', filename):
details["series"] = "February/March"
# Extract variant
variant_match = re.search(r'[Vv]ariant[_\s]?(\d)|[Pp]aper[_\s]?(\d{1,2})|_qp_(\d{1,2})', filename)
if variant_match:
details["variant"] = variant_match.group(1) or variant_match.group(2) or variant_match.group(3)
# Extract syllabus code and subject
code_match = re.search(r'\b(0\d{3})\b', filename)
if code_match:
details["syllabus_code"] = code_match.group(1)
code_subject_map = {
'0620': 'Chemistry', '0610': 'Biology'
}
details["subject"] = code_subject_map.get(code_match.group(1), "Unknown")
return details
def extract_questions_from_text(text, paper_id, paper_title, subject, paper_details):
"""Use AI to intelligently extract questions from past paper text"""
if not text or len(text) < 100:
return []
prompt = f"""Analyze this IGCSE {subject} past paper and extract ALL questions.
Paper Details:
- Subject: {subject}
- Year: {paper_details.get('year', 'Unknown')}
- Series: {paper_details.get('series', 'Unknown')}
- Paper: {paper_details.get('paper_number', 'Unknown')}
- Variant: {paper_details.get('variant', 'Unknown')}
Paper Text:
{text[:8000]}
Extract each question and return as JSON array. For each question include:
- question_number (e.g., "1(a)", "2(b)(i)")
- question_text (the complete question)
- marks (number of marks)
- topic (specific IGCSE {subject} topic)
- requires_insert (true/false - references diagrams, figures, data?)
- question_type (e.g., "multiple choice", "structured", "practical", "calculation", "explanation")
Return ONLY valid JSON array (no markdown):
[{{"question_number": "1(a)", "question_text": "...", "marks": 2, "topic": "...", "requires_insert": false, "question_type": "..."}}]"""
try:
response, _ = ask_ai(prompt, temperature=0.2)
clean_txt = response.replace("```json", "").replace("```", "").strip()
questions = json.loads(clean_txt)
for q in questions:
q['paper_id'] = paper_id
q['paper_title'] = paper_title
q['subject'] = subject
q['year'] = paper_details.get('year', 'Unknown')
q['series'] = paper_details.get('series', 'Unknown')
q['variant'] = paper_details.get('variant', 'Unknown')
q['paper_number'] = paper_details.get('paper_number', 'Unknown')
q['syllabus_code'] = paper_details.get('syllabus_code', 'Unknown')
return questions
except Exception as e:
print(f"Error extracting questions: {e}")
return extract_questions_fallback(text, paper_id, paper_title, subject, paper_details)
def extract_questions_fallback(text, paper_id, paper_title, subject, paper_details):
"""Fallback method using regex patterns"""
questions = []
pattern = r'(\d+(?:\([a-z]\))?(?:\([ivx]+\))?)\s+(.{20,500}?)\[(\d+)\]'
matches = re.finditer(pattern, text, re.IGNORECASE)
for match in matches:
q_num = match.group(1)
q_text = match.group(2).strip()
marks = int(match.group(3))
questions.append({
'question_number': q_num,
'question_text': q_text,
'marks': marks,
'topic': 'General',
'requires_insert': bool(re.search(r'Fig\.|diagram|table|graph|data|shown', q_text, re.IGNORECASE)),
'question_type': 'structured',
'paper_id': paper_id,
'paper_title': paper_title,
'subject': subject,
'year': paper_details.get('year', 'Unknown'),
'series': paper_details.get('series', 'Unknown'),
'variant': paper_details.get('variant', 'Unknown'),
'paper_number': paper_details.get('paper_number', 'Unknown'),
'syllabus_code': paper_details.get('syllabus_code', 'Unknown')
})
return questions
def process_insert_file(insert_file):
"""Process insert file (PDF or image)"""
if insert_file is None:
return None, None
try:
file_name = insert_file.name
file_ext = file_name.lower().split('.')[-1]
if file_ext == 'pdf':
text = extract_text_from_pdf(insert_file)
return text, "pdf"
elif file_ext in ['jpg', 'jpeg', 'png', 'gif']:
image = Image.open(insert_file)
return image, "image"
else:
return None, None
except Exception as e:
print(f"Error processing insert: {e}")
return None, None
# ---------- 6. Deep Understanding AI Tutor ----------
def ai_tutor_chat(message, history, subject, topic):
"""AI tutor focused on deep understanding and conceptual clarity"""
if not message.strip():
return history
subject_context = {
"Chemistry": """You are an expert IGCSE Chemistry tutor who prioritizes DEEP UNDERSTANDING over memorization.
Your teaching approach:
- Always explain the WHY behind chemical phenomena (not just the what)
- Connect microscopic (atomic/molecular) behavior to macroscopic observations
- Use real-world examples and applications to make concepts tangible
- Break down complex reactions into step-by-step mechanisms
- Emphasize patterns and relationships (e.g., periodic trends, reaction types)
- Address common misconceptions directly
- Use analogies and visual descriptions to clarify abstract concepts
- Encourage students to predict outcomes based on understanding, not memorization
- Link different topics together (e.g., bonding โ properties โ reactivity)
Key teaching principles:
- Particle theory underlies everything (structure determines properties)
- Energy changes drive chemical processes
- Conservation laws (mass, charge, energy) are fundamental
- Equilibrium and rates are about competing processes""",
"Biology": """You are an expert IGCSE Biology tutor who emphasizes DEEP UNDERSTANDING and interconnected thinking.
Your teaching approach:
- Always explain biological processes in terms of structure-function relationships
- Connect molecular/cellular processes to organism-level phenomena
- Use real-world health, ecology, and evolution examples
- Explain mechanisms step-by-step (don't just list facts)
- Emphasize the REASONS for biological adaptations and processes
- Address common misconceptions about evolution, genetics, and body systems
- Use analogies to make complex processes accessible (but explain their limits)
- Show how different biological systems interact and depend on each other
- Encourage students to apply knowledge to novel situations
- Link topics together (e.g., respiration โ transport โ gas exchange)
Key teaching principles:
- Evolution by natural selection explains adaptations
- Enzymes control the rate of life processes
- Homeostasis maintains stable internal conditions
- Energy flow and nutrient cycling connect ecology
- DNA โ RNA โ protein โ trait (central dogma)"""
}
system = f"""{subject_context[subject]}
Current focus: {topic or 'any topic'}
When answering:
1. Check for understanding gaps before giving the full answer
2. Use the Socratic method - guide thinking with questions
3. Provide detailed step-by-step explanations with reasoning
4. Include diagrams descriptions when helpful
5. Give practice examples for students to try
6. Connect to exam skills (command words, mark schemes)
7. Celebrate curiosity and deeper questions
Remember: Understanding beats memorization. Help students THINK like scientists."""
# Build conversation context
conversation = ""
for user_msg, bot_msg in history[-6:]:
if user_msg:
conversation += f"Student: {user_msg}\n"
if bot_msg:
clean_msg = bot_msg.replace("๐ต ", "").replace("๐ข ", "").replace("๐ฃ ", "")
conversation += f"Tutor: {clean_msg}\n"
conversation += f"Student: {message}\nTutor:"
full_prompt = f"{system}\n\nConversation:\n{conversation}"
bot_response, source = ask_ai(full_prompt, temperature=0.7)
# Add source indicator
if source == "cohere":
bot_response = f"๐ต {bot_response}"
elif source == "zai":
bot_response = f"๐ข {bot_response}"
elif source == "minimax":
bot_response = f"๐ฃ {bot_response}"
history.append((message, bot_response))
return history
def clear_chat():
return []
# ---------- 7. Concept Explainer with Depth ----------
def explain_concept(subject, concept):
"""Deep dive explanation of scientific concepts"""
if not concept:
return "Enter a concept to explain!"
prompt = f"""Provide a COMPREHENSIVE explanation of this IGCSE {subject} concept: "{concept}"
Structure your explanation as follows:
**1. CORE IDEA** (In simple terms - what IS it?)
**2. DEEPER UNDERSTANDING** (Why does it work this way? What's the mechanism?)
**3. KEY DETAILS & FACTS** (Important specifics students need to know)
**4. COMMON MISCONCEPTIONS** (What do students often get wrong?)
**5. REAL-WORLD CONNECTIONS** (Where do we see this? Why does it matter?)
**6. EXAM TIPS** (What questions test this? How to approach them?)
**7. PRACTICE THINKING** (A question to test understanding)
Use clear language, step-by-step reasoning, and helpful analogies.
Make connections to other topics. Focus on UNDERSTANDING, not just facts."""
response, source = ask_ai(prompt, temperature=0.5)
if source in ["cohere", "zai", "minimax"]:
response = f"{response}\n\n_[Explained by {source.title()}]_"
return response
# ---------- 8. Calculation Helper ----------
def solve_calculation(subject, problem, show_steps):
"""Step-by-step calculation solver with conceptual explanation"""
if not problem.strip():
return "Enter a calculation problem!"
steps_instruction = "Show EVERY step with full working" if show_steps else "Show key steps"
prompt = f"""Solve this IGCSE {subject} calculation problem with DEEP EXPLANATION:
Problem: {problem}
Provide:
1. **What we're finding**: Identify what the question asks for
2. **What we know**: List given information and its meaning
3. **Formula/Concept**: Which formula/principle applies and WHY
4. **Step-by-step solution**: {steps_instruction} with units
5. **Checking**: Does the answer make sense? Why?
6. **Concept explanation**: What does this result mean scientifically?
7. **Common mistakes**: What errors do students typically make?
8. **Related problems**: Similar question types to practice
Use clear formatting. Explain the reasoning at each step, not just the math."""
response, source = ask_ai(prompt, temperature=0.3)
if source in ["cohere", "zai", "minimax"]:
response = f"{response}\n\n_[Solved by {source.title()}]_"
return response
# ---------- 9. Experiment Analyzer ----------
def analyze_experiment(subject, experiment_description, question):
"""Analyze experiments and practical work with scientific reasoning"""
if not experiment_description.strip():
return "Describe the experiment!"
prompt = f"""Analyze this IGCSE {subject} experiment with focus on SCIENTIFIC THINKING:
Experiment: {experiment_description}
Question: {question if question else "Analyze this experiment comprehensively"}
Provide:
1. **Aim**: What is being investigated and why?
2. **Science Behind It**: What principles/concepts does this test?
3. **Method Analysis**: Why is it done this way? What makes it valid?
4. **Variables**: Independent, dependent, control variables and why they matter
5. **Expected Results**: What should happen and WHY (predict using theory)
6. **Safety & Practical Tips**: Important precautions and techniques
7. **Possible Errors**: What could go wrong? How to minimize errors?
8. **Results Analysis**: How to interpret data scientifically
9. **Evaluation**: How could this experiment be improved?
10. **Exam Connection**: How might this be tested?
Think like a scientist - connect method to theory."""
response, source = ask_ai(prompt, temperature=0.4)
if source in ["cohere", "zai", "minimax"]:
response = f"{response}\n\n_[Analyzed by {source.title()}]_"
return response
# ---------- 10. Enhanced Practice Questions ----------
def generate_question(subject, topic, difficulty):
"""Generate practice questions with focus on understanding"""
if not topic:
return "Select a topic!", "", ""
difficulty_guide = {
"Easy": "Test basic understanding and recall. Simple calculations or describe questions.",
"Medium": "Test application and analysis. Require explanations and connections.",
"Hard": "Test evaluation and synthesis. Multi-step problems, novel scenarios."
}
pdf_context = ""
for paper_id, content in pdf_content_storage.items():
paper = next((p for p in papers_storage if p['id'] == paper_id), None)
if paper and paper['subject'] == subject:
pdf_context += f"\n\nReference: {paper['title']}:\n{content[:2000]}"
prompt = f"""Create ONE high-quality IGCSE {subject} exam question on: "{topic}"
Difficulty: {difficulty} - {difficulty_guide[difficulty]}
{f"Base style on: {pdf_context[:1500]}" if pdf_context else "Create authentic exam-style question."}
The question should:
- Test UNDERSTANDING, not just recall
- Use appropriate command words (describe, explain, evaluate, calculate, etc.)
- Be worth 4-8 marks
- Include context/data if relevant
- Test ability to apply knowledge to new situations
Return ONLY valid JSON (no markdown):
{{
"question": "complete question with all context",
"marks": 6,
"command_word": "explain/describe/calculate/etc",
"expectedAnswer": "detailed key points with scientific reasoning",
"markScheme": "specific mark allocations and what earns each mark",
"understandingTips": "what concepts students need to understand to answer this"
}}"""
response, source = ask_ai(prompt, temperature=0.4)
try:
clean_txt = response.replace("```json", "").replace("```", "").strip()
data = json.loads(clean_txt)
question_text = f"**[{data['marks']} marks] - {data['command_word'].upper()}**\n\n{data['question']}"
expected = f"**Understanding Required:**\n{data.get('understandingTips', '')}\n\n**Key Points:**\n{data['expectedAnswer']}"
marks = data['markScheme']
return question_text, expected, marks
except:
return response, "", "Error parsing response"
def check_answer(question, expected, user_answer, subject):
"""Check answers with focus on understanding and reasoning"""
if not user_answer.strip():
return "Write your answer first!"
prompt = f"""Evaluate this IGCSE {subject} answer focusing on UNDERSTANDING and SCIENTIFIC REASONING:
Question: {question}
Expected answer points: {expected}
Student's answer:
{user_answer}
Assess:
1. Scientific accuracy
2. Depth of understanding (not just memorization)
3. Use of scientific terminology
4. Logical reasoning and explanations
5. Answering the specific command word
6. Completeness
Return JSON (no markdown):
{{
"score": 0-100,
"marks": "X/8",
"understanding_level": "surface/developing/strong/excellent",
"feedback": "detailed feedback on scientific understanding",
"strengths": "what shows good understanding",
"improvements": "how to deepen understanding",
"misconceptions": "any misunderstandings evident",
"examTips": "exam technique advice",
"followUpQuestion": "a question to test/extend understanding further"
}}"""
response, source = ask_ai(prompt, temperature=0.3)
try:
clean_txt = response.replace("```json", "").replace("```", "").strip()
fb = json.loads(clean_txt)
result = f"""๐ **Score: {fb['score']}% ({fb['marks']})**
**Understanding Level:** {fb['understanding_level'].upper()}
๐ **Detailed Feedback:**
{fb['feedback']}
โ
**Your Strengths:**
{fb['strengths']}
๐ **How to Deepen Understanding:**
{fb['improvements']}
โ ๏ธ **Misconceptions to Address:**
{fb.get('misconceptions', 'None identified')}
๐ก **Exam Tips:**
{fb['examTips']}
๐ค **Think Further:**
{fb.get('followUpQuestion', 'Keep practicing!')}"""
if source in ["cohere", "zai", "minimax"]:
result += f"\n\n_[Graded by {source.title()}]_"
return result
except:
return response
# ---------- 11. Past Papers Browser ----------
def search_questions_by_topic(subject, topic):
"""Search for questions matching a specific topic"""
if not questions_index:
return "๐ญ No questions available yet. Admin needs to upload past papers first!"
matching = [q for q in questions_index
if q['subject'] == subject and
(topic.lower() in q['topic'].lower() or topic.lower() in q['question_text'].lower())]
if not matching:
return f"๐ญ No questions found for {topic} in {subject}. Try a different topic or broader search."
result = f"### ๐ฏ Found {len(matching)} question(s) on '{topic}' in {subject}\n\n"
for i, q in enumerate(matching, 1):
insert_note = " ๐ผ๏ธ **[Requires Insert]**" if q.get('requires_insert') else ""
q_type = f" ({q.get('question_type', 'structured')})" if q.get('question_type') else ""
paper_info = f"**{q['year']} {q['series']}** - Paper {q['paper_number']}"
if q.get('variant') != 'Unknown':
paper_info += f" Variant {q['variant']}"
if q.get('syllabus_code') != 'Unknown':
paper_info += f" ({q['syllabus_code']})"
result += f"""**Question {i}** - {paper_info}
๐ **{q['question_number']}** [{q['marks']} marks]{q_type}{insert_note}
{q['question_text']}
{'โ'*80}
"""
return result
def view_papers_student(subject):
"""View all papers for a subject"""
filtered = [p for p in papers_storage if p["subject"] == subject]
if not filtered:
return f"๐ญ No {subject} papers available."
result = ""
for p in filtered:
insert_note = " ๐ผ๏ธ Insert Available" if p['id'] in insert_storage else ""
q_count = len([q for q in questions_index if q['paper_id'] == p['id']])
paper_details = p.get('paper_details', {})
year = paper_details.get('year', 'Unknown')
series = paper_details.get('series', 'Unknown')
variant = paper_details.get('variant', 'Unknown')
paper_num = paper_details.get('paper_number', 'Unknown')
syllabus = paper_details.get('syllabus_code', 'Unknown')
paper_info = f"**{year} {series}** - Paper {paper_num}"
if variant != 'Unknown':
paper_info += f" Variant {variant}"
if syllabus != 'Unknown':
paper_info += f" ({syllabus})"
result += f"""**{p['title']}** {'๐ PDF' if p.get('has_pdf') else ''}{insert_note}
{paper_info}
โฐ Uploaded: {p['uploaded_at']} | ๐ {q_count} questions extracted
{p['content'][:200]}...
{'โ'*80}
"""
return result
# ---------- 12. Admin Functions ----------
def verify_admin_password(password):
if password == ADMIN_PASSWORD:
return gr.update(visible=True), gr.update(visible=False), "โ
Access granted!"
return gr.update(visible=False), gr.update(visible=True), "โ Incorrect password!"
def upload_paper(title, subject, content, pdf_file, insert_file):
"""Upload past papers with AI extraction"""
if not all([title, subject, content]):
return "โ Please fill all required fields!", get_papers_list(), "๐ Status: Waiting for upload"
paper_id = len(papers_storage) + 1
pdf_text = ""
paper_details = {}
if pdf_file is not None:
pdf_text = extract_text_from_pdf(pdf_file)
if pdf_text and not pdf_text.startswith("Error"):
paper_details = identify_paper_details(pdf_text, pdf_file.name)
pdf_content_storage[paper_id] = pdf_text
detail_str = f"\n\n๐ **Paper Details:**"
detail_str += f"\n- Year: {paper_details.get('year', 'Unknown')}"
detail_str += f"\n- Series: {paper_details.get('series', 'Unknown')}"
detail_str += f"\n- Paper: {paper_details.get('paper_number', 'Unknown')}"
detail_str += f"\n- Variant: {paper_details.get('variant', 'Unknown')}"
if paper_details.get('syllabus_code') != 'Unknown':
detail_str += f"\n- Syllabus Code: {paper_details.get('syllabus_code')}"
content += detail_str
content += f"\n[๐ PDF extracted: {len(pdf_text)} characters]"
insert_data = None
insert_type = None
if insert_file is not None:
insert_data, insert_type = process_insert_file(insert_file)
if insert_data:
insert_storage[paper_id] = (insert_data, insert_type)
content += f"\n[๐ผ๏ธ Insert attached: {insert_type}]"
papers_storage.append({
"id": paper_id,
"title": title,
"subject": subject,
"content": content,
"has_pdf": bool(pdf_text and not pdf_text.startswith("Error")),
"has_insert": bool(insert_data),
"paper_details": paper_details,
"uploaded_at": datetime.now().strftime("%Y-%m-%d %H:%M")
})
status_msg = "โ
Paper uploaded!"
if pdf_text and not pdf_text.startswith("Error"):
status_msg += "\nโณ AI is extracting questions..."
questions = extract_questions_from_text(pdf_text, paper_id, title, subject, paper_details)
questions_index.extend(questions)
paper_info = f"{paper_details.get('year', 'Unknown')} {paper_details.get('series', 'Unknown')}"
if paper_details.get('variant') != 'Unknown':
paper_info += f" Variant {paper_details.get('variant')}"
status_msg += f"\nโ
Extracted {len(questions)} questions from **{paper_info}**!"
status_msg += f"\n๐ Identified as: {subject} Paper {paper_details.get('paper_number', 'Unknown')}"
return status_msg, get_papers_list(), f"๐ Total papers: {len(papers_storage)} | Total questions: {len(questions_index)}"
def get_papers_list():
"""Get formatted list of all papers"""
if not papers_storage:
return "No papers yet."
result = []
for p in papers_storage:
paper_details = p.get('paper_details', {})
year = paper_details.get('year', 'Unknown')
series = paper_details.get('series', 'Unknown')
variant = paper_details.get('variant', 'Unknown')
paper_num = paper_details.get('paper_number', 'Unknown')
paper_info = f"{year} {series} - Paper {paper_num}"
if variant != 'Unknown':
paper_info += f" V{variant}"
insert_icon = '๐ผ๏ธ Insert' if p.get('has_insert') else ''
pdf_icon = '๐ PDF' if p.get('has_pdf') else ''
result.append(f"**{p['title']}** ({p['subject']}) {pdf_icon} {insert_icon}\n{paper_info}\nโฐ {p['uploaded_at']}\n{p['content'][:120]}...\n{'โ'*60}")
return "\n".join(result)
# ---------- 13. Gradio UI ----------
with gr.Blocks(theme=gr.themes.Soft(), title="IGCSE Science Platform") as app:
gr.Markdown("""
# ๐ฌ IGCSE Science Learning Platform
Chemistry โ๏ธ | Biology ๐งฌ
_Deep Understanding Through AI-Powered Learning_
""")
with gr.Tabs():
# โโโโโ STUDENT PORTAL โโโโโ
with gr.Tab("๐จโ๐ Student Portal"):
with gr.Tabs():
# AI TUTOR
with gr.Tab("๐ค AI Tutor - Deep Understanding"):
gr.Markdown("""### Chat with Your AI Science Tutor
*Focus on understanding WHY, not just memorizing facts*
**Tips for getting the most from your tutor:**
- Ask "why" and "how" questions
- Request step-by-step explanations
- Ask for real-world examples
- Challenge yourself with "what if" scenarios""")
with gr.Row():
subj = gr.Radio(["Chemistry", "Biology"], label="Subject", value="Chemistry")
topc = gr.Dropdown(chemistry_topics, label="Topic (optional)", allow_custom_value=True)
def update_topics(s):
topics = {"Chemistry": chemistry_topics, "Biology": biology_topics}
return gr.Dropdown(choices=topics[s], value=None)
subj.change(update_topics, subj, topc)
chat = gr.Chatbot(height=500, show_label=False)
txt = gr.Textbox(placeholder="Ask anything... e.g., 'Why do ionic compounds conduct electricity when molten but not when solid?'", label="Message")
with gr.Row():
send = gr.Button("Send ๐ค", variant="primary")
clr = gr.Button("Clear ๐")
send.click(ai_tutor_chat, [txt, chat, subj, topc], chat)
txt.submit(ai_tutor_chat, [txt, chat, subj, topc], chat)
clr.click(clear_chat, outputs=chat)
# CONCEPT EXPLAINER
with gr.Tab("๐ก Concept Explainer"):
gr.Markdown("""### Deep Dive into Scientific Concepts
*Get comprehensive explanations that build real understanding*""")
with gr.Row():
ce_subj = gr.Radio(["Chemistry", "Biology"], label="Subject", value="Chemistry")
ce_concept = gr.Textbox(label="Concept to Explain",
placeholder="e.g., 'covalent bonding', 'osmosis', 'enzyme action'")
ce_output = gr.Markdown(label="Explanation")
gr.Button("๐ Explain Concept", variant="primary", size="lg").click(
explain_concept, [ce_subj, ce_concept], ce_output
)
# CALCULATION HELPER
with gr.Tab("๐งฎ Calculation Helper"):
gr.Markdown("""### Step-by-Step Problem Solving
*Understand the reasoning, not just the answer*""")
calc_subj = gr.Radio(["Chemistry", "Biology"], label="Subject", value="Chemistry")
calc_problem = gr.Textbox(lines=4, label="Problem",
placeholder="e.g., 'Calculate the mass of calcium carbonate needed to produce 22g of carbon dioxide'")
calc_steps = gr.Checkbox(label="Show detailed steps", value=True)
calc_output = gr.Markdown(label="Solution")
gr.Button("โ๏ธ Solve Problem", variant="primary", size="lg").click(
solve_calculation, [calc_subj, calc_problem, calc_steps], calc_output
)
# EXPERIMENT ANALYZER
with gr.Tab("๐ฌ Experiment Analyzer"):
gr.Markdown("""### Understand Scientific Investigations
*Connect practical work to theory*""")
exp_subj = gr.Radio(["Chemistry", "Biology"], label="Subject", value="Chemistry")
exp_desc = gr.Textbox(lines=5, label="Experiment Description",
placeholder="Describe the experiment setup and procedure...")
exp_q = gr.Textbox(label="Specific Question (optional)",
placeholder="e.g., 'Why must we use excess acid in this experiment?'")
exp_output = gr.Markdown(label="Analysis")
gr.Button("๐ Analyze Experiment", variant="primary", size="lg").click(
analyze_experiment, [exp_subj, exp_desc, exp_q], exp_output
)
# PAST PAPERS BROWSER
with gr.Tab("๐ Past Papers Browser"):
gr.Markdown("""### ๐ฏ Search Real Exam Questions by Topic
*Practice with actual IGCSE questions*""")
with gr.Row():
pp_subject = gr.Radio(["Chemistry", "Biology"], label="Subject", value="Chemistry")
pp_topic = gr.Dropdown(chemistry_topics, label="Select Topic")
pp_subject.change(update_topics, pp_subject, pp_topic)
search_btn = gr.Button("๐ Search Questions", variant="primary", size="lg")
questions_output = gr.Markdown(label="Questions Found", value="Select a topic and click Search")
search_btn.click(search_questions_by_topic, [pp_subject, pp_topic], questions_output)
gr.Markdown("---\n### ๐ Browse All Papers")
browse_subject = gr.Radio(["Chemistry", "Biology"], label="Subject", value="Chemistry")
papers_display = gr.Markdown(label="Available Papers")
gr.Button("๐ Show All Papers").click(view_papers_student, browse_subject, papers_display)
# PRACTICE QUESTIONS
with gr.Tab("โ Practice Questions"):
gr.Markdown("""### Generate & Practice Exam Questions
*Focus on understanding, not just correct answers*""")
with gr.Row():
ps = gr.Radio(["Chemistry", "Biology"], label="Subject", value="Chemistry")
pt = gr.Dropdown(chemistry_topics, label="Topic")
diff = gr.Radio(["Easy", "Medium", "Hard"], label="Difficulty", value="Medium")
ps.change(update_topics, ps, pt)
q = gr.Textbox(label="๐ Question", lines=8, interactive=False)
exp = gr.Textbox(label="Understanding Required & Expected Points", lines=6, interactive=False)
mark = gr.Textbox(label="๐ Mark Scheme", lines=5, interactive=False)
ans = gr.Textbox(lines=12, label="โ Your Answer",
placeholder="Write your answer here. Focus on explaining your reasoning...")
fb = gr.Textbox(lines=18, label="๐ Detailed Feedback", interactive=False)
with gr.Row():
gr.Button("๐ฒ Generate Question", variant="primary").click(
generate_question, [ps, pt, diff], [q, exp, mark]
)
gr.Button("โ
Check Answer", variant="secondary").click(
check_answer, [q, exp, ans, ps], fb
)
# โโโโโ ADMIN PANEL โโโโโ
with gr.Tab("๐ Admin Panel"):
with gr.Column() as login_section:
gr.Markdown("### ๐ Admin Login")
pwd = gr.Textbox(label="Password", type="password", placeholder="Enter admin password")
login_btn = gr.Button("๐ Login", variant="primary")
login_status = gr.Textbox(label="Status", interactive=False)
with gr.Column(visible=False) as admin_section:
gr.Markdown("""### ๐ค Upload Past Papers & Resources
**Instructions:**
1. **Title**: e.g., "Paper 2 Chemistry - June 2023"
2. **Subject**: Select Chemistry or Biology
3. **Content**: Add description, syllabus code (0620 Chemistry, 0610 Biology), or notes
4. **PDF**: Upload the actual past paper (questions will be auto-extracted)
5. **Insert**: Upload any accompanying insert/resource booklet
The AI will automatically:
- Identify paper details (year, series, variant)
- Extract all questions with topics
- Index them for student search
- Store insert materials for reference
""")
with gr.Row():
with gr.Column():
t = gr.Textbox(label="๐ Title", placeholder="e.g., Paper 2 Chemistry - October/November 2023")
s = gr.Radio(["Chemistry", "Biology"], label="Subject", value="Chemistry")
c = gr.Textbox(lines=5, label="Content/Description",
placeholder="Add notes, syllabus code (0620/0610), or instructions...")
pdf = gr.File(label="๐ Past Paper PDF (questions will be extracted)", file_types=[".pdf"])
insert = gr.File(label="๐ผ๏ธ Insert/Resource Booklet (optional)",
file_types=[".pdf", ".jpg", ".jpeg", ".png"])
up = gr.Button("โฌ Upload Paper", variant="primary", size="lg")
st = gr.Textbox(label="Upload Status", lines=4)
stats = gr.Textbox(label="๐ Database Statistics", value="๐ Status: No papers uploaded yet")
with gr.Column():
gr.Markdown("### ๐ All Uploaded Papers")
lst = gr.Textbox(lines=26, label="Papers Database", value=get_papers_list(),
interactive=False, show_label=False)
up.click(upload_paper, [t, s, c, pdf, insert], [st, lst, stats])
login_btn.click(verify_admin_password, [pwd], [admin_section, login_section, login_status])
gr.Markdown("""
---
**System Status:** ๐ข Gemini AI (Primary) | ๐ต Cohere (Secondary) | ๐ข Z.ai (Tertiary) | ๐ฃ MiniMax (Fallback)
**Key Features:**
- ๐ง **Deep Understanding Focus**: AI emphasizes WHY, not just WHAT
- ๐ฏ Smart question extraction and topic-based search
- ๐ผ๏ธ Insert/resource support for diagrams and data
- ๐ Comprehensive concept explanations
- ๐งฎ Step-by-step calculation support
- ๐ฌ Experiment analysis with theory connections
- ๐ค Multi-AI fallback system for reliability
**Teaching Philosophy:**
- Structure determines function
- Understanding beats memorization
- Connect concepts across topics
- Apply knowledge to novel situations
""")
app.launch() |