Spaces:
Sleeping
Sleeping
File size: 32,900 Bytes
c16738b abf06a0 c16738b abf06a0 c16738b abf06a0 c16738b abf06a0 c16738b abf06a0 c16738b abf06a0 c16738b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 |
"""
Advanced Reddit Scraper with Exponential Backoff, Hierarchy Tracking, and User History
"""
import praw
import pandas as pd
import time
import json
import sqlite3
import hashlib
from datetime import datetime, timedelta
from typing import List, Dict, Any, Optional, Tuple, Set
import concurrent.futures
from functools import lru_cache
import pytz
import os
import pickle
from pathlib import Path
class ExponentialBackoff:
"""Implements exponential backoff with jitter for rate limiting"""
def __init__(self, base_delay: float = 1.0, max_delay: float = 60.0, factor: float = 2.0):
self.base_delay = base_delay
self.max_delay = max_delay
self.factor = factor
self.attempt = 0
def reset(self):
"""Reset backoff counter"""
self.attempt = 0
def wait(self):
"""Calculate and execute wait with exponential backoff"""
if self.attempt == 0:
delay = self.base_delay
else:
# Exponential backoff with jitter
delay = min(self.base_delay * (self.factor ** self.attempt), self.max_delay)
# Add jitter (±25% randomization)
import random
jitter = delay * 0.25 * (2 * random.random() - 1)
delay = delay + jitter
time.sleep(delay)
self.attempt += 1
return delay
def success(self):
"""Call on successful request to reset or reduce backoff"""
self.attempt = max(0, self.attempt - 1)
class CommentHierarchyTracker:
"""Tracks and reconstructs comment hierarchies with parent relationships"""
def __init__(self):
self.comments = {}
self.submissions = {}
self.orphaned_comments = set()
def add_submission(self, submission_id: str, submission_data: Dict):
"""Add a submission with t3_ prefix"""
if not submission_id.startswith('t3_'):
submission_id = f't3_{submission_id}'
self.submissions[submission_id] = submission_data
def add_comment(self, comment_id: str, parent_id: str, comment_data: Dict):
"""Add a comment with proper t1_/t3_ prefixes and parent tracking"""
# Ensure proper prefixes
if not comment_id.startswith('t1_'):
comment_id = f't1_{comment_id}'
if parent_id:
if not parent_id.startswith(('t1_', 't3_')):
# Determine if parent is submission or comment
if parent_id in [s.replace('t3_', '') for s in self.submissions.keys()]:
parent_id = f't3_{parent_id}'
else:
parent_id = f't1_{parent_id}'
comment_data['parent_id'] = parent_id
self.comments[comment_id] = comment_data
# Track orphans
if parent_id and parent_id not in self.submissions and parent_id not in self.comments:
self.orphaned_comments.add(comment_id)
def reconstruct_thread(self, submission_id: str) -> Dict:
"""Reconstruct complete thread hierarchy"""
if not submission_id.startswith('t3_'):
submission_id = f't3_{submission_id}'
thread = {
'submission': self.submissions.get(submission_id, {}),
'comments': {},
'hierarchy': {}
}
# Build hierarchy
for comment_id, comment in self.comments.items():
if comment.get('submission_id') == submission_id:
parent_id = comment.get('parent_id')
if parent_id == submission_id:
# Top-level comment
thread['hierarchy'][comment_id] = comment
thread['hierarchy'][comment_id]['replies'] = {}
else:
# Reply to another comment
self._add_to_hierarchy(thread['hierarchy'], comment_id, parent_id, comment)
thread['comments'] = {cid: c for cid, c in self.comments.items()
if c.get('submission_id') == submission_id}
return thread
def _add_to_hierarchy(self, hierarchy: Dict, comment_id: str, parent_id: str, comment: Dict):
"""Recursively add comment to hierarchy"""
for cid, node in hierarchy.items():
if cid == parent_id:
if 'replies' not in node:
node['replies'] = {}
node['replies'][comment_id] = comment
node['replies'][comment_id]['replies'] = {}
return True
elif 'replies' in node and node['replies']:
if self._add_to_hierarchy(node['replies'], comment_id, parent_id, comment):
return True
return False
def get_orphan_statistics(self) -> Dict:
"""Get statistics about orphaned comments"""
return {
'total_comments': len(self.comments),
'orphaned_count': len(self.orphaned_comments),
'orphan_rate': len(self.orphaned_comments) / max(len(self.comments), 1),
'orphaned_ids': list(self.orphaned_comments)[:10] # Sample
}
class UserHistoryCollector:
"""Collects complete user histories across subreddits"""
def __init__(self, reddit_instance: praw.Reddit, backoff: ExponentialBackoff):
self.reddit = reddit_instance
self.backoff = backoff
self.user_data = {}
self.processed_users = set()
def collect_user_history(self, username: str, limit: int = 1000,
include_comments: bool = True,
include_submissions: bool = True) -> Dict:
"""Collect complete history for a user"""
if username in self.processed_users:
return self.user_data.get(username, {})
user_history = {
'username': username,
'submissions': [],
'comments': [],
'subreddits': set(),
'first_activity': None,
'last_activity': None,
'total_karma': 0,
'metadata': {}
}
try:
user = self.reddit.redditor(username)
# Get user metadata
try:
user_history['metadata'] = {
'created_utc': datetime.fromtimestamp(user.created_utc, tz=pytz.UTC),
'comment_karma': user.comment_karma,
'link_karma': user.link_karma,
'is_gold': user.is_gold if hasattr(user, 'is_gold') else False,
'is_mod': user.is_mod if hasattr(user, 'is_mod') else False,
'verified': user.verified if hasattr(user, 'verified') else False
}
user_history['total_karma'] = user.comment_karma + user.link_karma
except Exception:
pass # User metadata not accessible
# Collect submissions
if include_submissions:
for submission in user.submissions.new(limit=limit):
self.backoff.success() # Reset backoff on success
sub_data = {
'id': f't3_{submission.id}',
'title': submission.title,
'subreddit': str(submission.subreddit),
'created_utc': datetime.fromtimestamp(submission.created_utc, tz=pytz.UTC),
'score': submission.score,
'num_comments': submission.num_comments,
'selftext': submission.selftext[:1000] if submission.selftext else '',
'url': submission.url,
'permalink': f"https://reddit.com{submission.permalink}"
}
user_history['submissions'].append(sub_data)
user_history['subreddits'].add(str(submission.subreddit))
# Track activity timeline
if not user_history['first_activity'] or sub_data['created_utc'] < user_history['first_activity']:
user_history['first_activity'] = sub_data['created_utc']
if not user_history['last_activity'] or sub_data['created_utc'] > user_history['last_activity']:
user_history['last_activity'] = sub_data['created_utc']
# Collect comments
if include_comments:
for comment in user.comments.new(limit=limit):
self.backoff.success() # Reset backoff on success
com_data = {
'id': f't1_{comment.id}',
'body': comment.body[:1000],
'subreddit': str(comment.subreddit),
'submission_id': f't3_{comment.submission.id}' if comment.submission else None,
'parent_id': comment.parent_id,
'created_utc': datetime.fromtimestamp(comment.created_utc, tz=pytz.UTC),
'score': comment.score,
'permalink': f"https://reddit.com{comment.permalink}"
}
user_history['comments'].append(com_data)
user_history['subreddits'].add(str(comment.subreddit))
# Track activity timeline
if not user_history['first_activity'] or com_data['created_utc'] < user_history['first_activity']:
user_history['first_activity'] = com_data['created_utc']
if not user_history['last_activity'] or com_data['created_utc'] > user_history['last_activity']:
user_history['last_activity'] = com_data['created_utc']
# Convert subreddits set to list for JSON serialization
user_history['subreddits'] = list(user_history['subreddits'])
# Mark as processed
self.processed_users.add(username)
self.user_data[username] = user_history
return user_history
except praw.exceptions.APIException as e:
if e.error_type == "USER_DOESNT_EXIST":
self.processed_users.add(username)
return {'username': username, 'error': 'User does not exist'}
else:
# Rate limited - use exponential backoff
delay = self.backoff.wait()
print(f"Rate limited. Waiting {delay:.2f} seconds...")
return self.collect_user_history(username, limit, include_comments, include_submissions)
except Exception as e:
print(f"Error collecting history for {username}: {e}")
return {'username': username, 'error': str(e)}
def collect_users_from_subreddit(self, subreddit_name: str,
post_limit: int = 100,
user_limit: int = 50) -> List[str]:
"""Discover users from a subreddit"""
users = set()
try:
subreddit = self.reddit.subreddit(subreddit_name)
# Get users from hot posts
for submission in subreddit.hot(limit=post_limit):
if submission.author:
users.add(str(submission.author))
# Get users from comments
submission.comments.replace_more(limit=0)
for comment in submission.comments.list()[:10]: # Limit comments per post
if comment.author:
users.add(str(comment.author))
if len(users) >= user_limit:
break
return list(users)[:user_limit]
except Exception as e:
print(f"Error discovering users from r/{subreddit_name}: {e}")
return []
def get_user_network(self, users: List[str]) -> Dict:
"""Build interaction network from user histories"""
network = {
'nodes': [],
'edges': [],
'subreddit_overlap': {},
'temporal_overlap': {}
}
# Create nodes
for username in users:
if username in self.user_data:
user = self.user_data[username]
network['nodes'].append({
'id': username,
'karma': user.get('total_karma', 0),
'subreddits': len(user.get('subreddits', [])),
'submissions': len(user.get('submissions', [])),
'comments': len(user.get('comments', []))
})
# Calculate edges based on subreddit overlap
for i, user1 in enumerate(users):
if user1 not in self.user_data:
continue
for user2 in users[i+1:]:
if user2 not in self.user_data:
continue
subs1 = set(self.user_data[user1].get('subreddits', []))
subs2 = set(self.user_data[user2].get('subreddits', []))
overlap = subs1.intersection(subs2)
if overlap:
network['edges'].append({
'source': user1,
'target': user2,
'weight': len(overlap),
'subreddits': list(overlap)
})
return network
class CheckpointManager:
"""Manages checkpoint saving and restoration for long-running operations"""
def __init__(self, checkpoint_dir: str = None):
# Use /tmp for HuggingFace Spaces compatibility (read-only filesystem)
if checkpoint_dir is None:
checkpoint_dir = os.environ.get('CHECKPOINT_DIR', '/tmp/checkpoints')
self.checkpoint_dir = Path(checkpoint_dir)
self.checkpoint_dir.mkdir(exist_ok=True, parents=True)
def save_checkpoint(self, state: Dict, checkpoint_name: str):
"""Save current state to checkpoint file"""
checkpoint_file = self.checkpoint_dir / f"{checkpoint_name}.pkl"
with open(checkpoint_file, 'wb') as f:
pickle.dump(state, f)
# Also save a JSON version for debugging
json_file = self.checkpoint_dir / f"{checkpoint_name}.json"
json_state = self._make_json_serializable(state)
with open(json_file, 'w') as f:
json.dump(json_state, f, indent=2, default=str)
def load_checkpoint(self, checkpoint_name: str) -> Optional[Dict]:
"""Load state from checkpoint file"""
checkpoint_file = self.checkpoint_dir / f"{checkpoint_name}.pkl"
if checkpoint_file.exists():
with open(checkpoint_file, 'rb') as f:
return pickle.load(f)
return None
def checkpoint_exists(self, checkpoint_name: str) -> bool:
"""Check if checkpoint exists"""
checkpoint_file = self.checkpoint_dir / f"{checkpoint_name}.pkl"
return checkpoint_file.exists()
def delete_checkpoint(self, checkpoint_name: str):
"""Delete checkpoint files"""
for ext in ['.pkl', '.json']:
checkpoint_file = self.checkpoint_dir / f"{checkpoint_name}{ext}"
if checkpoint_file.exists():
checkpoint_file.unlink()
def list_checkpoints(self) -> List[str]:
"""List all available checkpoints"""
return [f.stem for f in self.checkpoint_dir.glob("*.pkl")]
def _make_json_serializable(self, obj):
"""Convert objects to JSON-serializable format"""
if isinstance(obj, dict):
return {k: self._make_json_serializable(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [self._make_json_serializable(item) for item in obj]
elif isinstance(obj, set):
return list(obj)
elif isinstance(obj, (datetime, pd.Timestamp)):
return obj.isoformat()
elif hasattr(obj, '__dict__'):
return str(obj)
else:
return obj
class AdvancedRedditScraper:
"""
Advanced Reddit scraper with all research-grade features:
- Exponential backoff for rate limiting
- Comment hierarchy tracking with parent relationships
- Complete user history collection
- Checkpoint/resume capability
- Database persistence
"""
def __init__(self, client_id: str, client_secret: str, user_agent: str,
db_path: str = None):
"""Initialize advanced scraper with all components"""
# Reddit instance
self.reddit = praw.Reddit(
client_id=client_id,
client_secret=client_secret,
user_agent=user_agent,
check_for_async=False
)
# Components
self.backoff = ExponentialBackoff(base_delay=1.0, max_delay=60.0)
self.hierarchy_tracker = CommentHierarchyTracker()
self.user_collector = UserHistoryCollector(self.reddit, self.backoff)
self.checkpoint_manager = CheckpointManager()
# Database setup - use /tmp for HuggingFace Spaces
if db_path is None:
db_path = os.environ.get('DB_PATH', '/tmp/reddit_data.db')
self.db_path = db_path
self._init_database()
# State tracking
self.state = {
'processed_submissions': set(),
'processed_users': set(),
'failed_items': [],
'statistics': {}
}
def _init_database(self):
"""Initialize SQLite database with proper schema"""
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
# Create tables
cursor.execute("""
CREATE TABLE IF NOT EXISTS submissions (
id TEXT PRIMARY KEY,
title TEXT,
author TEXT,
subreddit TEXT,
created_utc TIMESTAMP,
score INTEGER,
num_comments INTEGER,
selftext TEXT,
url TEXT,
permalink TEXT,
scraped_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
cursor.execute("""
CREATE TABLE IF NOT EXISTS comments (
id TEXT PRIMARY KEY,
submission_id TEXT,
parent_id TEXT,
author TEXT,
body TEXT,
created_utc TIMESTAMP,
score INTEGER,
subreddit TEXT,
permalink TEXT,
depth INTEGER,
scraped_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (submission_id) REFERENCES submissions(id)
)
""")
cursor.execute("""
CREATE TABLE IF NOT EXISTS users (
username TEXT PRIMARY KEY,
created_utc TIMESTAMP,
comment_karma INTEGER,
link_karma INTEGER,
is_gold BOOLEAN,
is_mod BOOLEAN,
verified BOOLEAN,
first_activity TIMESTAMP,
last_activity TIMESTAMP,
total_submissions INTEGER,
total_comments INTEGER,
scraped_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
cursor.execute("""
CREATE TABLE IF NOT EXISTS user_activity (
id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT,
item_type TEXT,
item_id TEXT,
subreddit TEXT,
created_utc TIMESTAMP,
score INTEGER,
FOREIGN KEY (username) REFERENCES users(username)
)
""")
conn.commit()
conn.close()
def scrape_with_hierarchy(self, subreddit_name: str, limit: int = 100,
checkpoint_name: str = None) -> Dict:
"""
Scrape subreddit with full comment hierarchy tracking and checkpointing
"""
# Load checkpoint if exists
if checkpoint_name and self.checkpoint_manager.checkpoint_exists(checkpoint_name):
state = self.checkpoint_manager.load_checkpoint(checkpoint_name)
self.state = state['scraper_state']
self.hierarchy_tracker = state['hierarchy_tracker']
start_after = state.get('last_submission_id')
print(f"Resuming from checkpoint: {checkpoint_name}")
else:
start_after = None
results = {
'submissions': [],
'comments': [],
'hierarchies': {},
'statistics': {}
}
try:
subreddit = self.reddit.subreddit(subreddit_name)
submission_count = 0
for submission in subreddit.hot(limit=limit):
# Skip if already processed
if f't3_{submission.id}' in self.state['processed_submissions']:
continue
# Skip until we reach the checkpoint
if start_after and f't3_{submission.id}' != start_after:
continue
elif start_after:
start_after = None # Found checkpoint, continue from here
try:
# Process submission
sub_data = self._process_submission_with_comments(submission)
results['submissions'].append(sub_data['submission'])
results['comments'].extend(sub_data['comments'])
# Track in hierarchy
self.hierarchy_tracker.add_submission(
submission.id,
sub_data['submission']
)
for comment in sub_data['comments']:
self.hierarchy_tracker.add_comment(
comment['id'].replace('t1_', ''),
comment['parent_id'],
comment
)
# Save to database
self._save_to_database(sub_data)
# Update state
self.state['processed_submissions'].add(f't3_{submission.id}')
submission_count += 1
# Checkpoint every 10 submissions
if checkpoint_name and submission_count % 10 == 0:
self._save_checkpoint(checkpoint_name, f't3_{submission.id}')
# Success - reduce backoff
self.backoff.success()
except praw.exceptions.APIException:
# Rate limited - use exponential backoff
delay = self.backoff.wait()
print(f"Rate limited. Waiting {delay:.2f} seconds...")
except Exception as e:
print(f"Error processing submission {submission.id}: {e}")
self.state['failed_items'].append({
'id': f't3_{submission.id}',
'error': str(e)
})
except Exception as e:
print(f"Error accessing subreddit {subreddit_name}: {e}")
# Build hierarchies for all submissions
for sub_id in self.state['processed_submissions']:
hierarchy = self.hierarchy_tracker.reconstruct_thread(sub_id)
if hierarchy['submission']:
results['hierarchies'][sub_id] = hierarchy
# Calculate statistics
results['statistics'] = {
'total_submissions': len(results['submissions']),
'total_comments': len(results['comments']),
'orphan_stats': self.hierarchy_tracker.get_orphan_statistics(),
'failed_items': len(self.state['failed_items'])
}
# Final checkpoint
if checkpoint_name:
self._save_checkpoint(checkpoint_name, None)
return results
def _process_submission_with_comments(self, submission) -> Dict:
"""Process a submission with all its comments"""
# Process submission
sub_data = {
'id': f't3_{submission.id}',
'title': submission.title,
'author': str(submission.author) if submission.author else '[deleted]',
'subreddit': str(submission.subreddit),
'created_utc': datetime.fromtimestamp(submission.created_utc, tz=pytz.UTC),
'score': submission.score,
'num_comments': submission.num_comments,
'selftext': submission.selftext,
'url': submission.url,
'permalink': f"https://reddit.com{submission.permalink}"
}
# Process all comments
comments = []
submission.comments.replace_more(limit=None) # Get ALL comments
for comment in submission.comments.list():
com_data = {
'id': f't1_{comment.id}',
'submission_id': f't3_{submission.id}',
'parent_id': comment.parent_id,
'author': str(comment.author) if comment.author else '[deleted]',
'body': comment.body,
'created_utc': datetime.fromtimestamp(comment.created_utc, tz=pytz.UTC),
'score': comment.score,
'subreddit': str(submission.subreddit),
'permalink': f"https://reddit.com{comment.permalink}",
'depth': comment.depth
}
comments.append(com_data)
return {
'submission': sub_data,
'comments': comments
}
def collect_user_histories(self, users: List[str],
checkpoint_name: str = None) -> Dict:
"""Collect complete histories for a list of users"""
histories = {}
for i, username in enumerate(users):
print(f"Collecting history for {username} ({i+1}/{len(users)})")
history = self.user_collector.collect_user_history(username)
histories[username] = history
# Save to database
if history and 'error' not in history:
self._save_user_to_database(history)
# Checkpoint every 5 users
if checkpoint_name and (i + 1) % 5 == 0:
self.checkpoint_manager.save_checkpoint({
'users_processed': list(histories.keys()),
'current_index': i
}, checkpoint_name)
return histories
def _save_to_database(self, data: Dict):
"""Save submission and comments to database"""
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
# Save submission
sub = data['submission']
cursor.execute("""
INSERT OR REPLACE INTO submissions
(id, title, author, subreddit, created_utc, score,
num_comments, selftext, url, permalink)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""", (
sub['id'], sub['title'], sub['author'], sub['subreddit'],
sub['created_utc'], sub['score'], sub['num_comments'],
sub['selftext'], sub['url'], sub['permalink']
))
# Save comments
for comment in data['comments']:
cursor.execute("""
INSERT OR REPLACE INTO comments
(id, submission_id, parent_id, author, body, created_utc,
score, subreddit, permalink, depth)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""", (
comment['id'], comment['submission_id'], comment['parent_id'],
comment['author'], comment['body'], comment['created_utc'],
comment['score'], comment['subreddit'], comment['permalink'],
comment.get('depth', 0)
))
conn.commit()
conn.close()
def _save_user_to_database(self, user_history: Dict):
"""Save user history to database"""
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
# Save user metadata
metadata = user_history.get('metadata', {})
cursor.execute("""
INSERT OR REPLACE INTO users
(username, created_utc, comment_karma, link_karma, is_gold,
is_mod, verified, first_activity, last_activity,
total_submissions, total_comments)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""", (
user_history['username'],
metadata.get('created_utc'),
metadata.get('comment_karma', 0),
metadata.get('link_karma', 0),
metadata.get('is_gold', False),
metadata.get('is_mod', False),
metadata.get('verified', False),
user_history.get('first_activity'),
user_history.get('last_activity'),
len(user_history.get('submissions', [])),
len(user_history.get('comments', []))
))
# Save user activity
for sub in user_history.get('submissions', []):
cursor.execute("""
INSERT INTO user_activity
(username, item_type, item_id, subreddit, created_utc, score)
VALUES (?, ?, ?, ?, ?, ?)
""", (
user_history['username'], 'submission', sub['id'],
sub['subreddit'], sub['created_utc'], sub['score']
))
for com in user_history.get('comments', []):
cursor.execute("""
INSERT INTO user_activity
(username, item_type, item_id, subreddit, created_utc, score)
VALUES (?, ?, ?, ?, ?, ?)
""", (
user_history['username'], 'comment', com['id'],
com['subreddit'], com['created_utc'], com['score']
))
conn.commit()
conn.close()
def _save_checkpoint(self, checkpoint_name: str, last_submission_id: str):
"""Save current state to checkpoint"""
checkpoint_data = {
'scraper_state': self.state,
'hierarchy_tracker': self.hierarchy_tracker,
'last_submission_id': last_submission_id,
'timestamp': datetime.now(pytz.UTC)
}
self.checkpoint_manager.save_checkpoint(checkpoint_data, checkpoint_name)
print(f"Checkpoint saved: {checkpoint_name}")
def get_statistics(self) -> Dict:
"""Get comprehensive statistics from database"""
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
stats = {}
# Submission stats
cursor.execute("SELECT COUNT(*) FROM submissions")
stats['total_submissions'] = cursor.fetchone()[0]
# Comment stats
cursor.execute("SELECT COUNT(*) FROM comments")
stats['total_comments'] = cursor.fetchone()[0]
# User stats
cursor.execute("SELECT COUNT(*) FROM users")
stats['total_users'] = cursor.fetchone()[0]
# Orphan analysis
cursor.execute("""
SELECT COUNT(*) FROM comments
WHERE parent_id NOT LIKE 't3_%'
AND parent_id NOT IN (SELECT id FROM comments)
""")
stats['orphaned_comments'] = cursor.fetchone()[0]
# Subreddit distribution
cursor.execute("""
SELECT subreddit, COUNT(*) as count
FROM submissions
GROUP BY subreddit
ORDER BY count DESC
LIMIT 10
""")
stats['top_subreddits'] = cursor.fetchall()
# Temporal range
cursor.execute("""
SELECT MIN(created_utc), MAX(created_utc)
FROM submissions
""")
time_range = cursor.fetchone()
if time_range[0]:
stats['date_range'] = {
'first': time_range[0],
'last': time_range[1]
}
conn.close()
return stats |