File size: 20,393 Bytes
6c982a7
 
eda7f22
6c982a7
eda7f22
6c982a7
 
 
eda7f22
 
 
 
6c982a7
 
 
 
 
 
eda7f22
 
 
 
 
 
 
 
 
 
 
 
6c982a7
 
 
 
 
eda7f22
 
6c982a7
eda7f22
6c982a7
 
eda7f22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c982a7
 
 
eda7f22
6c982a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eda7f22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c982a7
 
 
 
 
eda7f22
6c982a7
 
eda7f22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c982a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eda7f22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c982a7
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import Optional, List, Dict
from PIL import Image
import io
import numpy as np
import os
from datetime import datetime
from pymongo import MongoClient
from huggingface_hub import InferenceClient

from embedding_service import JinaClipEmbeddingService
from qdrant_service import QdrantVectorService

# Initialize FastAPI app
app = FastAPI(
    title="Event Social Media Embeddings & ChatbotRAG API",
    description="API để embeddings, search và ChatbotRAG với Jina CLIP v2 + Qdrant + MongoDB + LLM",
    version="2.0.0"
)

# CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Initialize services
print("Initializing services...")
embedding_service = JinaClipEmbeddingService(model_path="jinaai/jina-clip-v2")

collection_name = os.getenv("COLLECTION_NAME", "event_social_media")
qdrant_service = QdrantVectorService(
    collection_name=collection_name,
    vector_size=embedding_service.get_embedding_dimension()
)
print(f"✓ Qdrant collection: {collection_name}")

# MongoDB connection
mongodb_uri = os.getenv("MONGODB_URI", "mongodb+srv://truongtn7122003:7KaI9OT5KTUxWjVI@truongtn7122003.xogin4q.mongodb.net/")
mongo_client = MongoClient(mongodb_uri)
db = mongo_client[os.getenv("MONGODB_DB_NAME", "chatbot_rag")]
documents_collection = db["documents"]
chat_history_collection = db["chat_history"]
print("✓ MongoDB connected")

# Hugging Face token
hf_token = os.getenv("HUGGINGFACE_TOKEN")
if hf_token:
    print("✓ Hugging Face token configured")

print("✓ Services initialized successfully")


# Pydantic models for embeddings
class SearchRequest(BaseModel):
    text: Optional[str] = None
    limit: int = 10
    score_threshold: Optional[float] = None
    text_weight: float = 0.5
    image_weight: float = 0.5


class SearchResponse(BaseModel):
    id: str
    confidence: float
    metadata: dict


class IndexResponse(BaseModel):
    success: bool
    id: str
    message: str


# Pydantic models for ChatbotRAG
class ChatRequest(BaseModel):
    message: str
    use_rag: bool = True
    top_k: int = 3
    system_message: Optional[str] = "You are a helpful AI assistant."
    max_tokens: int = 512
    temperature: float = 0.7
    top_p: float = 0.95
    hf_token: Optional[str] = None


class ChatResponse(BaseModel):
    response: str
    context_used: List[Dict]
    timestamp: str


class AddDocumentRequest(BaseModel):
    text: str
    metadata: Optional[Dict] = None


class AddDocumentResponse(BaseModel):
    success: bool
    doc_id: str
    message: str


@app.get("/")
async def root():
    """Health check endpoint"""
    return {
        "status": "running",
        "service": "Event Social Media Embeddings & ChatbotRAG API",
        "embedding_model": "Jina CLIP v2",
        "vector_db": "Qdrant",
        "language_support": "Vietnamese + 88 other languages",
        "endpoints": {
            "embeddings": {
                "POST /index": "Index data với text/image",
                "POST /search": "Hybrid search",
                "POST /search/text": "Text search",
                "POST /search/image": "Image search",
                "DELETE /delete/{doc_id}": "Delete document",
                "GET /document/{doc_id}": "Get document",
                "GET /stats": "Collection statistics"
            },
            "chatbot_rag": {
                "POST /chat": "Chat với RAG",
                "POST /documents": "Add document to knowledge base",
                "POST /rag/search": "Search in knowledge base",
                "GET /history": "Get chat history",
                "DELETE /documents/{doc_id}": "Delete document from knowledge base"
            }
        }
    }


@app.post("/index", response_model=IndexResponse)
async def index_data(
    id: str = Form(...),
    text: str = Form(...),
    image: Optional[UploadFile] = File(None)
):
    """
    Index data vào vector database

    Body:
    - id: Document ID (event ID, post ID, etc.)
    - text: Text content (tiếng Việt supported)
    - image: Image file (optional)

    Returns:
    - success: True/False
    - id: Document ID
    - message: Status message
    """
    try:
        # Prepare embeddings
        text_embedding = None
        image_embedding = None

        # Encode text (tiếng Việt)
        if text and text.strip():
            text_embedding = embedding_service.encode_text(text)

        # Encode image nếu có
        if image:
            image_bytes = await image.read()
            pil_image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
            image_embedding = embedding_service.encode_image(pil_image)

        # Combine embeddings
        if text_embedding is not None and image_embedding is not None:
            # Average của text và image embeddings
            combined_embedding = np.mean([text_embedding, image_embedding], axis=0)
        elif text_embedding is not None:
            combined_embedding = text_embedding
        elif image_embedding is not None:
            combined_embedding = image_embedding
        else:
            raise HTTPException(status_code=400, detail="Phải cung cấp ít nhất text hoặc image")

        # Normalize
        combined_embedding = combined_embedding / np.linalg.norm(combined_embedding, axis=1, keepdims=True)

        # Index vào Qdrant
        metadata = {
            "text": text,
            "has_image": image is not None,
            "image_filename": image.filename if image else None
        }

        result = qdrant_service.index_data(
            doc_id=id,
            embedding=combined_embedding,
            metadata=metadata
        )

        return IndexResponse(
            success=True,
            id=result["original_id"],  # Trả về MongoDB ObjectId
            message=f"Đã index thành công document {result['original_id']} (Qdrant UUID: {result['qdrant_id']})"
        )

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Lỗi khi index: {str(e)}")


@app.post("/search", response_model=List[SearchResponse])
async def search(
    text: Optional[str] = Form(None),
    image: Optional[UploadFile] = File(None),
    limit: int = Form(10),
    score_threshold: Optional[float] = Form(None),
    text_weight: float = Form(0.5),
    image_weight: float = Form(0.5)
):
    """
    Search similar documents bằng text và/hoặc image

    Body:
    - text: Query text (tiếng Việt supported)
    - image: Query image (optional)
    - limit: Số lượng kết quả (default: 10)
    - score_threshold: Minimum confidence score (0-1)
    - text_weight: Weight cho text search (default: 0.5)
    - image_weight: Weight cho image search (default: 0.5)

    Returns:
    - List of results với id, confidence, và metadata
    """
    try:
        # Prepare query embeddings
        text_embedding = None
        image_embedding = None

        # Encode text query
        if text and text.strip():
            text_embedding = embedding_service.encode_text(text)

        # Encode image query
        if image:
            image_bytes = await image.read()
            pil_image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
            image_embedding = embedding_service.encode_image(pil_image)

        # Validate input
        if text_embedding is None and image_embedding is None:
            raise HTTPException(status_code=400, detail="Phải cung cấp ít nhất text hoặc image để search")

        # Hybrid search với Qdrant
        results = qdrant_service.hybrid_search(
            text_embedding=text_embedding,
            image_embedding=image_embedding,
            text_weight=text_weight,
            image_weight=image_weight,
            limit=limit,
            score_threshold=score_threshold,
            ef=256  # High accuracy search
        )

        # Format response
        return [
            SearchResponse(
                id=result["id"],
                confidence=result["confidence"],
                metadata=result["metadata"]
            )
            for result in results
        ]

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Lỗi khi search: {str(e)}")


@app.post("/search/text", response_model=List[SearchResponse])
async def search_by_text(
    text: str = Form(...),
    limit: int = Form(10),
    score_threshold: Optional[float] = Form(None)
):
    """
    Search chỉ bằng text (tiếng Việt)

    Body:
    - text: Query text (tiếng Việt)
    - limit: Số lượng kết quả
    - score_threshold: Minimum confidence score

    Returns:
    - List of results
    """
    try:
        # Encode text
        text_embedding = embedding_service.encode_text(text)

        # Search
        results = qdrant_service.search(
            query_embedding=text_embedding,
            limit=limit,
            score_threshold=score_threshold,
            ef=256
        )

        return [
            SearchResponse(
                id=result["id"],
                confidence=result["confidence"],
                metadata=result["metadata"]
            )
            for result in results
        ]

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Lỗi khi search: {str(e)}")


@app.post("/search/image", response_model=List[SearchResponse])
async def search_by_image(
    image: UploadFile = File(...),
    limit: int = Form(10),
    score_threshold: Optional[float] = Form(None)
):
    """
    Search chỉ bằng image

    Body:
    - image: Query image
    - limit: Số lượng kết quả
    - score_threshold: Minimum confidence score

    Returns:
    - List of results
    """
    try:
        # Encode image
        image_bytes = await image.read()
        pil_image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
        image_embedding = embedding_service.encode_image(pil_image)

        # Search
        results = qdrant_service.search(
            query_embedding=image_embedding,
            limit=limit,
            score_threshold=score_threshold,
            ef=256
        )

        return [
            SearchResponse(
                id=result["id"],
                confidence=result["confidence"],
                metadata=result["metadata"]
            )
            for result in results
        ]

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Lỗi khi search: {str(e)}")


@app.delete("/delete/{doc_id}")
async def delete_document(doc_id: str):
    """
    Delete document by ID (MongoDB ObjectId hoặc UUID)

    Args:
    - doc_id: Document ID to delete

    Returns:
    - Success message
    """
    try:
        qdrant_service.delete_by_id(doc_id)
        return {"success": True, "message": f"Đã xóa document {doc_id}"}
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Lỗi khi xóa: {str(e)}")


@app.get("/document/{doc_id}")
async def get_document(doc_id: str):
    """
    Get document by ID (MongoDB ObjectId hoặc UUID)

    Args:
    - doc_id: Document ID (MongoDB ObjectId)

    Returns:
    - Document data
    """
    try:
        doc = qdrant_service.get_by_id(doc_id)
        if doc:
            return {
                "success": True,
                "data": doc
            }
        raise HTTPException(status_code=404, detail=f"Không tìm thấy document {doc_id}")
    except HTTPException:
        raise
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Lỗi khi get document: {str(e)}")


@app.get("/stats")
async def get_stats():
    """
    Lấy thông tin thống kê collection

    Returns:
    - Collection statistics
    """
    try:
        info = qdrant_service.get_collection_info()
        return info
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Lỗi khi lấy stats: {str(e)}")


# ============================================
# ChatbotRAG Endpoints
# ============================================

@app.post("/chat", response_model=ChatResponse)
async def chat(request: ChatRequest):
    """
    Chat endpoint với RAG

    Body:
    - message: User message
    - use_rag: Enable RAG retrieval (default: true)
    - top_k: Number of documents to retrieve (default: 3)
    - system_message: System prompt (optional)
    - max_tokens: Max tokens for response (default: 512)
    - temperature: Temperature for generation (default: 0.7)
    - hf_token: Hugging Face token (optional, sẽ dùng env nếu không truyền)

    Returns:
    - response: Generated response
    - context_used: Retrieved context documents
    - timestamp: Response timestamp
    """
    try:
        # Retrieve context if RAG enabled
        context_used = []
        if request.use_rag:
            # Generate query embedding
            query_embedding = embedding_service.encode_text(request.message)
            
            # Search in Qdrant
            results = qdrant_service.search(
                query_embedding=query_embedding,
                limit=request.top_k,
                score_threshold=0.5
            )
            context_used = results

        # Build context text
        context_text = ""
        if context_used:
            context_text = "\n\nRelevant Context:\n"
            for i, doc in enumerate(context_used, 1):
                doc_text = doc["metadata"].get("text", "")
                confidence = doc["confidence"]
                context_text += f"\n[{i}] (Confidence: {confidence:.2f})\n{doc_text}\n"

            # Add context to system message
            system_message = f"{request.system_message}\n{context_text}\n\nPlease use the above context to answer the user's question when relevant."
        else:
            system_message = request.system_message

        # Use token from request or fallback to env
        token = request.hf_token or hf_token

        # Generate response
        if not token:
            response = f"""[LLM Response Placeholder]

Context retrieved: {len(context_used)} documents
User question: {request.message}

To enable actual LLM generation:
1. Set HUGGINGFACE_TOKEN environment variable, OR
2. Pass hf_token in request body

Example:
{{
  "message": "Your question",
  "hf_token": "hf_xxxxxxxxxxxxx"
}}
"""
        else:
            try:
                client = InferenceClient(
                    token=token,
                    model="openai/gpt-oss-20b"
                )

                # Build messages
                messages = [
                    {"role": "system", "content": system_message},
                    {"role": "user", "content": request.message}
                ]

                # Generate response
                response = ""
                for msg in client.chat_completion(
                    messages,
                    max_tokens=request.max_tokens,
                    stream=True,
                    temperature=request.temperature,
                    top_p=request.top_p,
                ):
                    choices = msg.choices
                    if len(choices) and choices[0].delta.content:
                        response += choices[0].delta.content

            except Exception as e:
                response = f"Error generating response with LLM: {str(e)}\n\nContext was retrieved successfully, but LLM generation failed."

        # Save to history
        chat_data = {
            "user_message": request.message,
            "assistant_response": response,
            "context_used": context_used,
            "timestamp": datetime.utcnow()
        }
        chat_history_collection.insert_one(chat_data)

        return ChatResponse(
            response=response,
            context_used=context_used,
            timestamp=datetime.utcnow().isoformat()
        )

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error: {str(e)}")


@app.post("/documents", response_model=AddDocumentResponse)
async def add_document(request: AddDocumentRequest):
    """
    Add document to knowledge base

    Body:
    - text: Document text
    - metadata: Additional metadata (optional)

    Returns:
    - success: True/False
    - doc_id: MongoDB document ID
    - message: Status message
    """
    try:
        # Save to MongoDB
        doc_data = {
            "text": request.text,
            "metadata": request.metadata or {},
            "created_at": datetime.utcnow()
        }
        result = documents_collection.insert_one(doc_data)
        doc_id = str(result.inserted_id)

        # Generate embedding
        embedding = embedding_service.encode_text(request.text)

        # Index to Qdrant
        qdrant_service.index_data(
            doc_id=doc_id,
            embedding=embedding,
            metadata={
                "text": request.text,
                "source": "api",
                **(request.metadata or {})
            }
        )

        return AddDocumentResponse(
            success=True,
            doc_id=doc_id,
            message=f"Document added successfully with ID: {doc_id}"
        )

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error: {str(e)}")


@app.post("/rag/search", response_model=List[SearchResponse])
async def rag_search(
    query: str = Form(...),
    top_k: int = Form(5),
    score_threshold: Optional[float] = Form(0.5)
):
    """
    Search in knowledge base

    Body:
    - query: Search query
    - top_k: Number of results (default: 5)
    - score_threshold: Minimum score (default: 0.5)

    Returns:
    - results: List of matching documents
    """
    try:
        # Generate query embedding
        query_embedding = embedding_service.encode_text(query)

        # Search in Qdrant
        results = qdrant_service.search(
            query_embedding=query_embedding,
            limit=top_k,
            score_threshold=score_threshold
        )

        return [
            SearchResponse(
                id=result["id"],
                confidence=result["confidence"],
                metadata=result["metadata"]
            )
            for result in results
        ]

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error: {str(e)}")


@app.get("/history")
async def get_history(limit: int = 10, skip: int = 0):
    """
    Get chat history

    Query params:
    - limit: Number of messages to return (default: 10)
    - skip: Number of messages to skip (default: 0)

    Returns:
    - history: List of chat messages
    """
    try:
        history = list(
            chat_history_collection
            .find({}, {"_id": 0})
            .sort("timestamp", -1)
            .skip(skip)
            .limit(limit)
        )

        # Convert datetime to string
        for msg in history:
            if "timestamp" in msg:
                msg["timestamp"] = msg["timestamp"].isoformat()

        return {
            "history": history,
            "total": chat_history_collection.count_documents({})
        }

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error: {str(e)}")


@app.delete("/documents/{doc_id}")
async def delete_document_from_kb(doc_id: str):
    """
    Delete document from knowledge base

    Args:
    - doc_id: Document ID (MongoDB ObjectId)

    Returns:
    - success: True/False
    - message: Status message
    """
    try:
        # Delete from MongoDB
        result = documents_collection.delete_one({"_id": doc_id})

        # Delete from Qdrant
        if result.deleted_count > 0:
            qdrant_service.delete_by_id(doc_id)
            return {"success": True, "message": f"Document {doc_id} deleted from knowledge base"}
        else:
            raise HTTPException(status_code=404, detail=f"Document {doc_id} not found")

    except HTTPException:
        raise
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error: {str(e)}")


if __name__ == "__main__":
    import uvicorn
    uvicorn.run(
        app,
        host="0.0.0.0",
        port=8000,
        log_level="info"
    )