File size: 13,353 Bytes
6c982a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05351f2
6c982a7
05351f2
6c982a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
from fastapi import FastAPI, HTTPException, File, UploadFile, Form
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import Optional, List, Dict
from pymongo import MongoClient
from datetime import datetime
import numpy as np
import os
from huggingface_hub import InferenceClient

from embedding_service import JinaClipEmbeddingService
from qdrant_service import QdrantVectorService


# Pydantic models
class ChatRequest(BaseModel):
    message: str
    use_rag: bool = True
    top_k: int = 3
    system_message: Optional[str] = "You are a helpful AI assistant."
    max_tokens: int = 512
    temperature: float = 0.7
    top_p: float = 0.95
    hf_token: Optional[str] = None  # Hugging Face token (optional, sẽ dùng env nếu không truyền)


class ChatResponse(BaseModel):
    response: str
    context_used: List[Dict]
    timestamp: str


class AddDocumentRequest(BaseModel):
    text: str
    metadata: Optional[Dict] = None


class AddDocumentResponse(BaseModel):
    success: bool
    doc_id: str
    message: str


class SearchRequest(BaseModel):
    query: str
    top_k: int = 5
    score_threshold: Optional[float] = 0.5


class SearchResponse(BaseModel):
    results: List[Dict]


# Initialize FastAPI
app = FastAPI(
    title="ChatbotRAG API",
    description="API for RAG Chatbot with GPT-OSS-20B + Jina CLIP v2 + MongoDB + Qdrant",
    version="1.0.0"
)

# CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # Cho phép tất cả origins (có thể giới hạn trong production)
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


# ChatbotRAG Service
class ChatbotRAGService:
    """
    ChatbotRAG Service cho API
    """

    def __init__(
        self,
        mongodb_uri: str = "mongodb+srv://truongtn7122003:7KaI9OT5KTUxWjVI@truongtn7122003.xogin4q.mongodb.net/",
        db_name: str = "chatbot_rag",
        collection_name: str = "documents",
        hf_token: Optional[str] = None
    ):
        print("Initializing ChatbotRAG Service...")

        # MongoDB
        self.mongo_client = MongoClient(mongodb_uri)
        self.db = self.mongo_client[db_name]
        self.documents_collection = self.db[collection_name]
        self.chat_history_collection = self.db["chat_history"]

        # Embedding service
        self.embedding_service = JinaClipEmbeddingService(
            model_path="jinaai/jina-clip-v2"
        )

        # Qdrant
        collection_name = os.getenv("COLLECTION_NAME","event_social_media")
        self.qdrant_service = QdrantVectorService(
            collection_name= collection_name,
            vector_size=self.embedding_service.get_embedding_dimension()
        )

        # Hugging Face token (từ env hoặc truyền vào)
        self.hf_token = hf_token or os.getenv("HUGGINGFACE_TOKEN")
        if self.hf_token:
            print("✓ Hugging Face token configured")
        else:
            print("⚠ No Hugging Face token - LLM generation will use placeholder")

        print("✓ ChatbotRAG Service initialized")

    def add_document(self, text: str, metadata: Dict = None) -> str:
        """Add document to knowledge base"""
        # Save to MongoDB
        doc_data = {
            "text": text,
            "metadata": metadata or {},
            "created_at": datetime.utcnow()
        }
        result = self.documents_collection.insert_one(doc_data)
        doc_id = str(result.inserted_id)

        # Generate embedding
        embedding = self.embedding_service.encode_text(text)

        # Index to Qdrant
        self.qdrant_service.index_data(
            doc_id=doc_id,
            embedding=embedding,
            metadata={
                "text": text,
                "source": "api",
                **(metadata or {})
            }
        )

        return doc_id

    def retrieve_context(self, query: str, top_k: int = 3, score_threshold: float = 0.5) -> List[Dict]:
        """Retrieve relevant context from vector DB"""
        # Generate query embedding
        query_embedding = self.embedding_service.encode_text(query)

        # Search in Qdrant
        results = self.qdrant_service.search(
            query_embedding=query_embedding,
            limit=top_k,
            score_threshold=score_threshold
        )

        return results

    def generate_response(
        self,
        message: str,
        context: List[Dict],
        system_message: str,
        max_tokens: int = 512,
        temperature: float = 0.7,
        top_p: float = 0.95,
        hf_token: Optional[str] = None
    ) -> str:
        """
        Generate response using Hugging Face LLM
        """
        # Build context text
        context_text = ""
        if context:
            context_text = "\n\nRelevant Context:\n"
            for i, doc in enumerate(context, 1):
                doc_text = doc["metadata"].get("text", "")
                confidence = doc["confidence"]
                context_text += f"\n[{i}] (Confidence: {confidence:.2f})\n{doc_text}\n"

            # Add context to system message
            system_message = f"{system_message}\n{context_text}\n\nPlease use the above context to answer the user's question when relevant."

        # Use token from request or fallback to service token
        token = hf_token or self.hf_token

        # If no token available, return placeholder
        if not token:
            return f"""[LLM Response Placeholder]

Context retrieved: {len(context)} documents
User question: {message}

To enable actual LLM generation:
1. Set HUGGINGFACE_TOKEN environment variable, OR
2. Pass hf_token in request body

Example:
{{
  "message": "Your question",
  "hf_token": "hf_xxxxxxxxxxxxx"
}}
"""

        # Initialize HF Inference Client
        try:
            client = InferenceClient(
                token=token,
                model="openai/gpt-oss-20b"
            )

            # Build messages
            messages = [
                {"role": "system", "content": system_message},
                {"role": "user", "content": message}
            ]

            # Generate response (non-streaming for API)
            response = ""
            for msg in client.chat_completion(
                messages,
                max_tokens=max_tokens,
                stream=True,
                temperature=temperature,
                top_p=top_p,
            ):
                choices = msg.choices
                if len(choices) and choices[0].delta.content:
                    response += choices[0].delta.content

            return response

        except Exception as e:
            return f"Error generating response with LLM: {str(e)}\n\nContext was retrieved successfully, but LLM generation failed."

    def save_chat_history(self, user_message: str, assistant_response: str, context_used: List[Dict]):
        """Save chat to MongoDB"""
        chat_data = {
            "user_message": user_message,
            "assistant_response": assistant_response,
            "context_used": context_used,
            "timestamp": datetime.utcnow()
        }
        self.chat_history_collection.insert_one(chat_data)

    def get_stats(self) -> Dict:
        """Get statistics"""
        return {
            "documents_count": self.documents_collection.count_documents({}),
            "chat_history_count": self.chat_history_collection.count_documents({}),
            "qdrant_info": self.qdrant_service.get_collection_info()
        }


# Initialize service
rag_service = ChatbotRAGService()


# API Endpoints

@app.get("/")
async def root():
    """Health check"""
    return {
        "status": "running",
        "service": "ChatbotRAG API",
        "version": "1.0.0",
        "endpoints": {
            "POST /chat": "Chat with RAG",
            "POST /documents": "Add document to knowledge base",
            "POST /search": "Search in knowledge base",
            "GET /stats": "Get statistics",
            "GET /history": "Get chat history"
        }
    }


@app.post("/chat", response_model=ChatResponse)
async def chat(request: ChatRequest):
    """
    Chat endpoint with RAG

    Body:
    - message: User message
    - use_rag: Enable RAG retrieval (default: true)
    - top_k: Number of documents to retrieve (default: 3)
    - system_message: System prompt (optional)
    - max_tokens: Max tokens for response (default: 512)
    - temperature: Temperature for generation (default: 0.7)

    Returns:
    - response: Generated response
    - context_used: Retrieved context documents
    - timestamp: Response timestamp
    """
    try:
        # Retrieve context if RAG enabled
        context_used = []
        if request.use_rag:
            context_used = rag_service.retrieve_context(
                query=request.message,
                top_k=request.top_k
            )

        # Generate response
        response = rag_service.generate_response(
            message=request.message,
            context=context_used,
            system_message=request.system_message,
            max_tokens=request.max_tokens,
            temperature=request.temperature,
            top_p=request.top_p,
            hf_token=request.hf_token
        )

        # Save to history
        rag_service.save_chat_history(
            user_message=request.message,
            assistant_response=response,
            context_used=context_used
        )

        return ChatResponse(
            response=response,
            context_used=context_used,
            timestamp=datetime.utcnow().isoformat()
        )

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error: {str(e)}")


@app.post("/documents", response_model=AddDocumentResponse)
async def add_document(request: AddDocumentRequest):
    """
    Add document to knowledge base

    Body:
    - text: Document text
    - metadata: Additional metadata (optional)

    Returns:
    - success: True/False
    - doc_id: MongoDB document ID
    - message: Status message
    """
    try:
        doc_id = rag_service.add_document(
            text=request.text,
            metadata=request.metadata
        )

        return AddDocumentResponse(
            success=True,
            doc_id=doc_id,
            message=f"Document added successfully with ID: {doc_id}"
        )

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error: {str(e)}")


@app.post("/search", response_model=SearchResponse)
async def search(request: SearchRequest):
    """
    Search in knowledge base

    Body:
    - query: Search query
    - top_k: Number of results (default: 5)
    - score_threshold: Minimum score (default: 0.5)

    Returns:
    - results: List of matching documents
    """
    try:
        results = rag_service.retrieve_context(
            query=request.query,
            top_k=request.top_k,
            score_threshold=request.score_threshold
        )

        return SearchResponse(results=results)

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error: {str(e)}")


@app.get("/stats")
async def get_stats():
    """
    Get statistics

    Returns:
    - documents_count: Number of documents in MongoDB
    - chat_history_count: Number of chat messages
    - qdrant_info: Qdrant collection info
    """
    try:
        return rag_service.get_stats()
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error: {str(e)}")


@app.get("/history")
async def get_history(limit: int = 10, skip: int = 0):
    """
    Get chat history

    Query params:
    - limit: Number of messages to return (default: 10)
    - skip: Number of messages to skip (default: 0)

    Returns:
    - history: List of chat messages
    """
    try:
        history = list(
            rag_service.chat_history_collection
            .find({}, {"_id": 0})
            .sort("timestamp", -1)
            .skip(skip)
            .limit(limit)
        )

        # Convert datetime to string
        for msg in history:
            if "timestamp" in msg:
                msg["timestamp"] = msg["timestamp"].isoformat()

        return {"history": history, "total": rag_service.chat_history_collection.count_documents({})}

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error: {str(e)}")


@app.delete("/documents/{doc_id}")
async def delete_document(doc_id: str):
    """
    Delete document from knowledge base

    Args:
    - doc_id: Document ID (MongoDB ObjectId)

    Returns:
    - success: True/False
    - message: Status message
    """
    try:
        # Delete from MongoDB
        result = rag_service.documents_collection.delete_one({"_id": doc_id})

        # Delete from Qdrant
        if result.deleted_count > 0:
            rag_service.qdrant_service.delete_by_id(doc_id)
            return {"success": True, "message": f"Document {doc_id} deleted"}
        else:
            raise HTTPException(status_code=404, detail=f"Document {doc_id} not found")

    except HTTPException:
        raise
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error: {str(e)}")


if __name__ == "__main__":
    import uvicorn
    uvicorn.run(
        app,
        host="0.0.0.0",
        port=8000,
        log_level="info"
    )