ChatbotRAG / main.py
minhvtt's picture
Upload 14 files
91fe002 verified
raw
history blame
34.8 kB
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import Optional, List, Dict
from PIL import Image
import io
import numpy as np
import os
from datetime import datetime
from pymongo import MongoClient
from huggingface_hub import InferenceClient
from embedding_service import JinaClipEmbeddingService
from qdrant_service import QdrantVectorService
from advanced_rag import AdvancedRAG
from cag_service import CAGService
from pdf_parser import PDFIndexer
from multimodal_pdf_parser import MultimodalPDFIndexer
from conversation_service import ConversationService
from tools_service import ToolsService
# Initialize FastAPI app
app = FastAPI(
title="Event Social Media Embeddings & ChatbotRAG API",
description="API để embeddings, search và ChatbotRAG với Jina CLIP v2 + Qdrant + MongoDB + LLM",
version="2.0.0"
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Initialize services
print("Initializing services...")
embedding_service = JinaClipEmbeddingService(model_path="jinaai/jina-clip-v2")
collection_name = os.getenv("COLLECTION_NAME", "event_social_media")
qdrant_service = QdrantVectorService(
collection_name=collection_name,
vector_size=embedding_service.get_embedding_dimension()
)
print(f"✓ Qdrant collection: {collection_name}")
# MongoDB connection
mongodb_uri = os.getenv("MONGODB_URI", "mongodb+srv://truongtn7122003:7KaI9OT5KTUxWjVI@truongtn7122003.xogin4q.mongodb.net/")
mongo_client = MongoClient(mongodb_uri)
db = mongo_client[os.getenv("MONGODB_DB_NAME", "chatbot_rag")]
documents_collection = db["documents"]
chat_history_collection = db["chat_history"]
print("✓ MongoDB connected")
# Hugging Face token
hf_token = os.getenv("HUGGINGFACE_TOKEN")
if hf_token:
print("✓ Hugging Face token configured")
# Initialize Advanced RAG (Best Case 2025)
advanced_rag = AdvancedRAG(
embedding_service=embedding_service,
qdrant_service=qdrant_service
)
print("✓ Advanced RAG pipeline initialized (with Cross-Encoder)")
# Initialize CAG Service (Semantic Cache)
try:
cag_service = CAGService(
embedding_service=embedding_service,
cache_collection="semantic_cache",
vector_size=embedding_service.get_embedding_dimension(),
similarity_threshold=0.9,
ttl_hours=24
)
print("✓ CAG Service initialized (Semantic Caching enabled)")
except Exception as e:
print(f"Warning: CAG Service initialization failed: {e}")
print("Continuing without semantic caching...")
cag_service = None
# Initialize PDF Indexer
pdf_indexer = PDFIndexer(
embedding_service=embedding_service,
qdrant_service=qdrant_service,
documents_collection=documents_collection
)
print("✓ PDF Indexer initialized")
# Initialize Multimodal PDF Indexer
multimodal_pdf_indexer = MultimodalPDFIndexer(
embedding_service=embedding_service,
qdrant_service=qdrant_service,
documents_collection=documents_collection
)
print("✓ Multimodal PDF Indexer initialized")
# Initialize Conversation Service
conversations_collection = db["conversations"]
conversation_service = ConversationService(conversations_collection, max_history=10)
print("✓ Conversation Service initialized")
# Initialize Tools Service
tools_service = ToolsService(base_url="https://www.festavenue.site")
print("✓ Tools Service initialized (Function Calling enabled)")
print("✓ Services initialized successfully")
# Pydantic models for embeddings
class SearchRequest(BaseModel):
text: Optional[str] = None
limit: int = 10
score_threshold: Optional[float] = None
text_weight: float = 0.5
image_weight: float = 0.5
class SearchResponse(BaseModel):
id: str
confidence: float
metadata: dict
class IndexResponse(BaseModel):
success: bool
id: str
message: str
# Pydantic models for ChatbotRAG
class ChatRequest(BaseModel):
message: str
session_id: Optional[str] = None # Multi-turn conversation
use_rag: bool = True
top_k: int = 3
system_message: Optional[str] = """Bạn là trợ lý AI chuyên biệt cho hệ thống quản lý sự kiện và bán vé.
Vai trò của bạn là trả lời các câu hỏi CHÍNH XÁC dựa trên dữ liệu được cung cấp từ hệ thống.
Quy tắc tuyệt đối:
- CHỈ trả lời câu hỏi liên quan đến: events, social media posts, PDFs đã upload, và dữ liệu trong knowledge base
- KHÔNG trả lời câu hỏi ngoài phạm vi (tin tức, thời tiết, toán học, lập trình, tư vấn cá nhân, v.v.)
- Nếu câu hỏi nằm ngoài phạm vi: BẮT BUỘC trả lời "Chúng tôi không thể trả lời câu hỏi này vì nó nằm ngoài vùng application xử lí."
- Luôn ưu tiên thông tin từ context được cung cấp"""
max_tokens: int = 512
temperature: float = 0.7
top_p: float = 0.95
hf_token: Optional[str] = None
# Advanced RAG options
use_advanced_rag: bool = True
use_query_expansion: bool = True
use_reranking: bool = False # Disabled - Cross-Encoder not good for Vietnamese
use_compression: bool = True
score_threshold: float = 0.5
# Function calling
enable_tools: bool = True # Enable API tool calling
class ChatResponse(BaseModel):
response: str
context_used: List[Dict]
timestamp: str
rag_stats: Optional[Dict] = None # Stats from advanced RAG pipeline
session_id: str # NEW: Session identifier for multi-turn
tool_calls: Optional[List[Dict]] = None # NEW: Track API calls made
class AddDocumentRequest(BaseModel):
text: str
metadata: Optional[Dict] = None
class AddDocumentResponse(BaseModel):
success: bool
doc_id: str
message: str
@app.get("/")
async def root():
"""Health check endpoint with comprehensive API documentation"""
return {
"status": "running",
"service": "ChatbotRAG API",
"version": "2.0.0",
"vector_db": "Qdrant",
"document_db": "MongoDB",
"endpoints": {
"chatbot_rag": {
"API endpoint": "https://minhvtt-ChatbotRAG.hf.space/",
"POST /chat": {
"description": "Chat với AI sử dụng RAG (Retrieval-Augmented Generation)",
"request": {
"method": "POST",
"content_type": "application/json",
"body": {
"message": "string (required) - User message/question",
"use_rag": "boolean (optional, default: true) - Enable RAG context retrieval",
"top_k": "integer (optional, default: 3) - Number of context documents to retrieve",
"system_message": "string (optional) - Custom system prompt",
"max_tokens": "integer (optional, default: 512) - Max response length",
"temperature": "float (optional, default: 0.7, range: 0-1) - Creativity level",
"top_p": "float (optional, default: 0.95) - Nucleus sampling",
"hf_token": "string (optional) - Hugging Face token (fallback to env)"
}
},
"response": {
"response": "string - AI generated response",
"context_used": [
{
"id": "string - Document ID",
"confidence": "float - Relevance score",
"metadata": {
"text": "string - Retrieved context"
}
}
],
"timestamp": "string - ISO 8601 timestamp"
},
"example_request": {
"message": "Dao có nguy hiểm không?",
"use_rag": True,
"top_k": 3,
"temperature": 0.7
},
"example_response": {
"response": "Dựa trên thông tin trong database, dao được phân loại là vũ khí nguy hiểm. Dao sắc có thể gây thương tích nghiêm trọng nếu không sử dụng đúng cách. Cần tuân thủ các quy định an toàn khi sử dụng.",
"context_used": [
{
"id": "68a3fc14c853d7621e8977b5",
"confidence": 0.92,
"metadata": {
"text": "Vũ khí"
}
},
{
"id": "68a3fc4cc853d7621e8977b6",
"confidence": 0.85,
"metadata": {
"text": "Con dao sắc"
}
}
],
"timestamp": "2025-10-13T10:30:45.123456"
},
"notes": [
"RAG retrieves relevant context from vector DB before generating response",
"LLM uses context to provide accurate, grounded answers",
"Requires HUGGINGFACE_TOKEN environment variable or hf_token in request"
]
},
"POST /documents": {
"description": "Add document to knowledge base for RAG",
"request": {
"method": "POST",
"content_type": "application/json",
"body": {
"text": "string (required) - Document text content",
"metadata": "object (optional) - Additional metadata (source, category, etc.)"
}
},
"response": {
"success": "boolean",
"doc_id": "string - MongoDB ObjectId",
"message": "string - Status message"
},
"example_request": {
"text": "Để tạo event mới: Click nút 'Tạo Event' ở góc trên bên phải màn hình. Điền thông tin sự kiện bao gồm tên, ngày giờ, địa điểm. Click Lưu để hoàn tất.",
"metadata": {
"source": "user_guide.pdf",
"section": "create_event",
"page": 5,
"category": "tutorial"
}
},
"example_response": {
"success": True,
"doc_id": "67a9876543210fedcba98765",
"message": "Document added successfully with ID: 67a9876543210fedcba98765"
}
},
"POST /rag/search": {
"description": "Search in knowledge base (similar to /search/text but for RAG documents)",
"request": {
"method": "POST",
"content_type": "multipart/form-data",
"body": {
"query": "string (required) - Search query",
"top_k": "integer (optional, default: 5) - Number of results",
"score_threshold": "float (optional, default: 0.5) - Minimum relevance score"
}
},
"response": [
{
"id": "string",
"confidence": "float",
"metadata": {
"text": "string",
"source": "string"
}
}
],
"example_request": {
"query": "cách tạo sự kiện mới",
"top_k": 3,
"score_threshold": 0.6
}
},
"GET /history": {
"description": "Get chat conversation history",
"request": {
"method": "GET",
"query_params": {
"limit": "integer (optional, default: 10) - Number of messages",
"skip": "integer (optional, default: 0) - Pagination offset"
}
},
"response": {
"history": [
{
"user_message": "string",
"assistant_response": "string",
"context_used": "array",
"timestamp": "string - ISO 8601"
}
],
"total": "integer - Total messages count"
},
"example_request": "GET /history?limit=5&skip=0",
"example_response": {
"history": [
{
"user_message": "Dao có nguy hiểm không?",
"assistant_response": "Dao được phân loại là vũ khí...",
"context_used": [],
"timestamp": "2025-10-13T10:30:45.123456"
}
],
"total": 15
}
},
"DELETE /documents/{doc_id}": {
"description": "Delete document from knowledge base",
"request": {
"method": "DELETE",
"path_params": {
"doc_id": "string - MongoDB ObjectId"
}
},
"response": {
"success": "boolean",
"message": "string"
}
}
}
},
"usage_examples": {
"curl_chat": "curl -X POST 'http://localhost:8000/chat' -H 'Content-Type: application/json' -d '{\"message\": \"Dao có nguy hiểm không?\", \"use_rag\": true}'",
"python_chat": """
import requests
response = requests.post(
'http://localhost:8000/chat',
json={
'message': 'Nút tạo event ở đâu?',
'use_rag': True,
'top_k': 3
}
)
print(response.json()['response'])
"""
},
"authentication": {
"embeddings_apis": "No authentication required",
"chat_api": "Requires HUGGINGFACE_TOKEN (env variable or request body)"
},
"rate_limits": {
"embeddings": "No limit",
"chat_with_llm": "Limited by Hugging Face API (free tier: ~1000 requests/hour)"
},
"error_codes": {
"400": "Bad Request - Missing required fields or invalid input",
"401": "Unauthorized - Invalid Hugging Face token",
"404": "Not Found - Document ID not found",
"500": "Internal Server Error - Server or database error"
},
"links": {
"docs": "http://localhost:8000/docs",
"redoc": "http://localhost:8000/redoc",
"openapi": "http://localhost:8000/openapi.json"
}
}
@app.post("/index", response_model=IndexResponse)
async def index_data(
id: str = Form(...),
text: str = Form(...),
image: Optional[UploadFile] = File(None)
):
"""
Index data vào vector database
Body:
- id: Document ID (event ID, post ID, etc.)
- text: Text content (tiếng Việt supported)
- image: Image file (optional)
Returns:
- success: True/False
- id: Document ID
- message: Status message
"""
try:
# Prepare embeddings
text_embedding = None
image_embedding = None
# Encode text (tiếng Việt)
if text and text.strip():
text_embedding = embedding_service.encode_text(text)
# Encode image nếu có
if image:
image_bytes = await image.read()
pil_image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
image_embedding = embedding_service.encode_image(pil_image)
# Combine embeddings
if text_embedding is not None and image_embedding is not None:
# Average của text và image embeddings
combined_embedding = np.mean([text_embedding, image_embedding], axis=0)
elif text_embedding is not None:
combined_embedding = text_embedding
elif image_embedding is not None:
combined_embedding = image_embedding
else:
raise HTTPException(status_code=400, detail="Phải cung cấp ít nhất text hoặc image")
# Normalize
combined_embedding = combined_embedding / np.linalg.norm(combined_embedding, axis=1, keepdims=True)
# Index vào Qdrant
metadata = {
"text": text,
"has_image": image is not None,
"image_filename": image.filename if image else None
}
result = qdrant_service.index_data(
doc_id=id,
embedding=combined_embedding,
metadata=metadata
)
return IndexResponse(
success=True,
id=result["original_id"], # Trả về MongoDB ObjectId
message=f"Đã index thành công document {result['original_id']} (Qdrant UUID: {result['qdrant_id']})"
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Lỗi khi index: {str(e)}")
@app.post("/search", response_model=List[SearchResponse])
async def search(
text: Optional[str] = Form(None),
image: Optional[UploadFile] = File(None),
limit: int = Form(10),
score_threshold: Optional[float] = Form(None),
text_weight: float = Form(0.5),
image_weight: float = Form(0.5)
):
"""
Search similar documents bằng text và/hoặc image
Body:
- text: Query text (tiếng Việt supported)
- image: Query image (optional)
- limit: Số lượng kết quả (default: 10)
- score_threshold: Minimum confidence score (0-1)
- text_weight: Weight cho text search (default: 0.5)
- image_weight: Weight cho image search (default: 0.5)
Returns:
- List of results với id, confidence, và metadata
"""
try:
# Prepare query embeddings
text_embedding = None
image_embedding = None
# Encode text query
if text and text.strip():
text_embedding = embedding_service.encode_text(text)
# Encode image query
if image:
image_bytes = await image.read()
pil_image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
image_embedding = embedding_service.encode_image(pil_image)
# Validate input
if text_embedding is None and image_embedding is None:
raise HTTPException(status_code=400, detail="Phải cung cấp ít nhất text hoặc image để search")
# Hybrid search với Qdrant
results = qdrant_service.hybrid_search(
text_embedding=text_embedding,
image_embedding=image_embedding,
text_weight=text_weight,
image_weight=image_weight,
limit=limit,
score_threshold=score_threshold,
ef=256 # High accuracy search
)
# Format response
return [
SearchResponse(
id=result["id"],
confidence=result["confidence"],
metadata=result["metadata"]
)
for result in results
]
except Exception as e:
raise HTTPException(status_code=500, detail=f"Lỗi khi search: {str(e)}")
@app.post("/search/text", response_model=List[SearchResponse])
async def search_by_text(
text: str = Form(...),
limit: int = Form(10),
score_threshold: Optional[float] = Form(None)
):
"""
Search chỉ bằng text (tiếng Việt)
Body:
- text: Query text (tiếng Việt)
- limit: Số lượng kết quả
- score_threshold: Minimum confidence score
Returns:
- List of results
"""
try:
# Encode text
text_embedding = embedding_service.encode_text(text)
# Search
results = qdrant_service.search(
query_embedding=text_embedding,
limit=limit,
score_threshold=score_threshold,
ef=256
)
return [
SearchResponse(
id=result["id"],
confidence=result["confidence"],
metadata=result["metadata"]
)
for result in results
]
except Exception as e:
raise HTTPException(status_code=500, detail=f"Lỗi khi search: {str(e)}")
@app.post("/search/image", response_model=List[SearchResponse])
async def search_by_image(
image: UploadFile = File(...),
limit: int = Form(10),
score_threshold: Optional[float] = Form(None)
):
"""
Search chỉ bằng image
Body:
- image: Query image
- limit: Số lượng kết quả
- score_threshold: Minimum confidence score
Returns:
- List of results
"""
try:
# Encode image
image_bytes = await image.read()
pil_image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
image_embedding = embedding_service.encode_image(pil_image)
# Search
results = qdrant_service.search(
query_embedding=image_embedding,
limit=limit,
score_threshold=score_threshold,
ef=256
)
return [
SearchResponse(
id=result["id"],
confidence=result["confidence"],
metadata=result["metadata"]
)
for result in results
]
except Exception as e:
raise HTTPException(status_code=500, detail=f"Lỗi khi search: {str(e)}")
@app.delete("/delete/{doc_id}")
async def delete_document(doc_id: str):
"""
Delete document by ID (MongoDB ObjectId hoặc UUID)
Args:
- doc_id: Document ID to delete
Returns:
- Success message
"""
try:
qdrant_service.delete_by_id(doc_id)
return {"success": True, "message": f"Đã xóa document {doc_id}"}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Lỗi khi xóa: {str(e)}")
@app.get("/document/{doc_id}")
async def get_document(doc_id: str):
"""
Get document by ID (MongoDB ObjectId hoặc UUID)
Args:
- doc_id: Document ID (MongoDB ObjectId)
Returns:
- Document data
"""
try:
doc = qdrant_service.get_by_id(doc_id)
if doc:
return {
"success": True,
"data": doc
}
raise HTTPException(status_code=404, detail=f"Không tìm thấy document {doc_id}")
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Lỗi khi get document: {str(e)}")
@app.get("/stats")
async def get_stats():
"""
Lấy thông tin thống kê collection
Returns:
- Collection statistics
"""
try:
info = qdrant_service.get_collection_info()
return info
except Exception as e:
raise HTTPException(status_code=500, detail=f"Lỗi khi lấy stats: {str(e)}")
# ============================================
# ChatbotRAG Endpoints
# ============================================
@app.post("/chat", response_model=ChatResponse)
async def chat(request: ChatRequest):
"""
Chat endpoint với RAG
Body:
- message: User message
- use_rag: Enable RAG retrieval (default: true)
- top_k: Number of documents to retrieve (default: 3)
- system_message: System prompt (optional)
- max_tokens: Max tokens for response (default: 512)
- temperature: Temperature for generation (default: 0.7)
- hf_token: Hugging Face token (optional, sẽ dùng env nếu không truyền)
Returns:
- response: Generated response
- context_used: Retrieved context documents
- timestamp: Response timestamp
"""
try:
# Retrieve context if RAG enabled
context_used = []
rag_stats = None
if request.use_rag:
if request.use_advanced_rag:
# Use Advanced RAG Pipeline (Best Case 2025)
hf_client = None
if request.hf_token or hf_token:
hf_client = InferenceClient(token=request.hf_token or hf_token)
documents, stats = advanced_rag.hybrid_rag_pipeline(
query=request.message,
top_k=request.top_k,
score_threshold=request.score_threshold,
use_reranking=request.use_reranking,
use_compression=request.use_compression,
use_query_expansion=request.use_query_expansion,
max_context_tokens=500,
hf_client=hf_client
)
# Convert to dict format
context_used = [
{
"id": doc.id,
"confidence": doc.confidence,
"metadata": doc.metadata
}
for doc in documents
]
rag_stats = stats
# Format context using Advanced RAG
context_text = advanced_rag.format_context_for_llm(documents)
else:
# Basic RAG (fallback)
query_embedding = embedding_service.encode_text(request.message)
results = qdrant_service.search(
query_embedding=query_embedding,
limit=request.top_k,
score_threshold=request.score_threshold
)
context_used = results
context_text = "\n\nRelevant Context:\n"
for i, doc in enumerate(context_used, 1):
doc_text = doc["metadata"].get("text", "")
if not doc_text:
doc_text = " ".join(doc["metadata"].get("texts", []))
confidence = doc["confidence"]
context_text += f"\n[{i}] (Confidence: {confidence:.2f})\n{doc_text}\n"
# Build system message with context
if request.use_rag and context_used:
if request.use_advanced_rag:
# Use Advanced RAG prompt builder
system_message = advanced_rag.build_rag_prompt(
query=request.message,
context=context_text,
system_message=request.system_message
)
else:
# Basic prompt
# Basic prompt with better instructions
system_message = f"""{request.system_message}
{context_text}
HƯỚNG DẪN:
- Sử dụng thông tin từ context trên để trả lời câu hỏi.
- Trả lời tự nhiên, thân thiện, không copy nguyên văn.
- Nếu tìm thấy sự kiện, hãy tóm tắt các thông tin quan trọng nhất.
"""
else:
system_message = request.system_message
# Use token from request or fallback to env
token = request.hf_token or hf_token
# Generate response
if not token:
response = f"""[LLM Response Placeholder]
Context retrieved: {len(context_used)} documents
User question: {request.message}
To enable actual LLM generation:
1. Set HUGGINGFACE_TOKEN environment variable, OR
2. Pass hf_token in request body
Example:
{{
"message": "Your question",
"hf_token": "hf_xxxxxxxxxxxxx"
}}
"""
else:
try:
client = InferenceClient(
token=hf_token,
model="openai/gpt-oss-20b"
)
# Build messages - luôn dùng cấu trúc chuẩn
# System = instructions + context, User = query
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": request.message}
]
# Generate response
response = ""
for msg in client.chat_completion(
messages,
max_tokens=request.max_tokens,
stream=True,
temperature=request.temperature,
top_p=request.top_p,
):
choices = msg.choices
if len(choices) and choices[0].delta.content:
response += choices[0].delta.content
except Exception as e:
response = f"Error generating response with LLM: {str(e)}\n\nContext was retrieved successfully, but LLM generation failed."
# Save to history
chat_data = {
"user_message": request.message,
"assistant_response": response,
"context_used": context_used,
"timestamp": datetime.utcnow()
}
chat_history_collection.insert_one(chat_data)
return ChatResponse(
response=response,
context_used=context_used,
timestamp=datetime.utcnow().isoformat(),
rag_stats=rag_stats
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
@app.post("/documents", response_model=AddDocumentResponse)
async def add_document(request: AddDocumentRequest):
"""
Add document to knowledge base
Body:
- text: Document text
- metadata: Additional metadata (optional)
Returns:
- success: True/False
- doc_id: MongoDB document ID
- message: Status message
"""
try:
# Save to MongoDB
doc_data = {
"text": request.text,
"metadata": request.metadata or {},
"created_at": datetime.utcnow()
}
result = documents_collection.insert_one(doc_data)
doc_id = str(result.inserted_id)
# Generate embedding
embedding = embedding_service.encode_text(request.text)
# Index to Qdrant
qdrant_service.index_data(
doc_id=doc_id,
embedding=embedding,
metadata={
"text": request.text,
"source": "api",
**(request.metadata or {})
}
)
return AddDocumentResponse(
success=True,
doc_id=doc_id,
message=f"Document added successfully with ID: {doc_id}"
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
@app.post("/rag/search", response_model=List[SearchResponse])
async def rag_search(
query: str = Form(...),
top_k: int = Form(5),
score_threshold: Optional[float] = Form(0.5)
):
"""
Search in knowledge base
Body:
- query: Search query
- top_k: Number of results (default: 5)
- score_threshold: Minimum score (default: 0.5)
Returns:
- results: List of matching documents
"""
try:
# Generate query embedding
query_embedding = embedding_service.encode_text(query)
# Search in Qdrant
results = qdrant_service.search(
query_embedding=query_embedding,
limit=top_k,
score_threshold=score_threshold
)
return [
SearchResponse(
id=result["id"],
confidence=result["confidence"],
metadata=result["metadata"]
)
for result in results
]
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
@app.get("/history")
async def get_history(limit: int = 10, skip: int = 0):
"""
Get chat history
Query params:
- limit: Number of messages to return (default: 10)
- skip: Number of messages to skip (default: 0)
Returns:
- history: List of chat messages
"""
try:
history = list(
chat_history_collection
.find({}, {"_id": 0})
.sort("timestamp", -1)
.skip(skip)
.limit(limit)
)
# Convert datetime to string
for msg in history:
if "timestamp" in msg:
msg["timestamp"] = msg["timestamp"].isoformat()
return {
"history": history,
"total": chat_history_collection.count_documents({})
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
@app.delete("/documents/{doc_id}")
async def delete_document_from_kb(doc_id: str):
"""
Delete document from knowledge base
Args:
- doc_id: Document ID (MongoDB ObjectId)
Returns:
- success: True/False
- message: Status message
"""
try:
# Delete from MongoDB
result = documents_collection.delete_one({"_id": doc_id})
# Delete from Qdrant
if result.deleted_count > 0:
qdrant_service.delete_by_id(doc_id)
return {"success": True, "message": f"Document {doc_id} deleted from knowledge base"}
else:
raise HTTPException(status_code=404, detail=f"Document {doc_id} not found")
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
if __name__ == "__main__":
import uvicorn
uvicorn.run(
app,
host="0.0.0.0",
port=8000,
log_level="info"
)