Spaces:
Running
Running
| """ | |
| Hybrid Chat Endpoint: RAG + Scenario FSM | |
| Routes between scripted scenarios and knowledge retrieval | |
| """ | |
| from fastapi import HTTPException | |
| from datetime import datetime | |
| from typing import Dict, Any | |
| import json | |
| # Import scenario handlers | |
| from scenario_handlers.price_inquiry import PriceInquiryHandler | |
| from scenario_handlers.event_recommendation import EventRecommendationHandler | |
| from scenario_handlers.post_event_feedback import PostEventFeedbackHandler | |
| from scenario_handlers.exit_intent_rescue import ExitIntentRescueHandler | |
| async def hybrid_chat_endpoint( | |
| request, # ChatRequest | |
| conversation_service, | |
| intent_classifier, | |
| embedding_service, # NEW: For handlers | |
| qdrant_service, # NEW: For handlers | |
| tools_service, | |
| advanced_rag, | |
| chat_history_collection, | |
| hf_token, | |
| lead_storage | |
| ): | |
| """ | |
| Hybrid conversational chatbot: Scenario FSM + RAG | |
| Flow: | |
| 1. Load session & scenario state | |
| 2. Classify intent (scenario vs RAG) | |
| 3. Route: | |
| - Scenario: Execute FSM flow | |
| - RAG: Knowledge retrieval | |
| - RAG+Resume: Answer question then resume scenario | |
| 4. Save state & history | |
| """ | |
| try: | |
| # ===== SESSION MANAGEMENT ===== | |
| session_id = request.session_id | |
| if not session_id: | |
| session_id = conversation_service.create_session( | |
| metadata={"user_agent": "api", "created_via": "hybrid_chat"}, | |
| user_id=request.user_id | |
| ) | |
| print(f"✓ Created session: {session_id} (user: {request.user_id or 'anon'})") | |
| else: | |
| if not conversation_service.session_exists(session_id): | |
| raise HTTPException(404, detail=f"Session {session_id} not found") | |
| # ===== LOAD SCENARIO STATE ===== | |
| scenario_state = conversation_service.get_scenario_state(session_id) or {} | |
| # ===== INTENT CLASSIFICATION ===== | |
| intent = intent_classifier.classify(request.message, scenario_state) | |
| print(f"🎯 Intent: {intent}") | |
| # ===== ROUTING ===== | |
| if intent.startswith("scenario:"): | |
| # Route to scenario engine | |
| response_data = await handle_scenario( | |
| intent, | |
| request.message, | |
| session_id, | |
| scenario_state, | |
| scenario_engine, | |
| conversation_service, | |
| advanced_rag, | |
| lead_storage # NEW: Pass for action handling | |
| ) | |
| elif intent == "rag:with_resume": | |
| # Answer question but keep scenario active | |
| response_data = await handle_rag_with_resume( | |
| request, | |
| session_id, | |
| scenario_state, | |
| advanced_rag, | |
| embedding_service, | |
| qdrant_service, | |
| conversation_service | |
| ) | |
| else: # rag:general | |
| # Pure RAG query | |
| response_data = await handle_pure_rag( | |
| request, | |
| session_id, | |
| advanced_rag, | |
| embedding_service, | |
| qdrant_service, | |
| tools_service, | |
| chat_history_collection, | |
| hf_token, | |
| conversation_service | |
| ) | |
| # ===== SAVE HISTORY ===== | |
| conversation_service.add_message( | |
| session_id, | |
| "user", | |
| request.message, | |
| metadata={"intent": intent} | |
| ) | |
| conversation_service.add_message( | |
| session_id, | |
| "assistant", | |
| response_data["response"], | |
| metadata={ | |
| "mode": response_data.get("mode", "unknown"), | |
| "context_used": response_data.get("context_used", [])[:3] # Limit size | |
| request, | |
| session_id, | |
| scenario_state, | |
| advanced_rag, | |
| embedding_service, | |
| qdrant_service, | |
| conversation_service | |
| ): | |
| """ | |
| Handle RAG query mid-scenario | |
| Answer question properly, then remind user to continue scenario | |
| """ | |
| # Query RAG with proper search | |
| context_used = [] | |
| if request.use_rag: | |
| query_embedding = embedding_service.encode_text(request.message) | |
| results = qdrant_service.search( | |
| query_embedding=query_embedding, | |
| limit=request.top_k, | |
| score_threshold=request.score_threshold, | |
| ef=256 | |
| ) | |
| context_used = results | |
| # Build REAL RAG response (not placeholder) | |
| if context_used and len(context_used) > 0: | |
| # Format top results nicely | |
| top_result = context_used[0] | |
| text = top_result['metadata'].get('text', '') | |
| # Extract most relevant snippet (first 300 chars) | |
| if text: | |
| rag_response = text[:300].strip() | |
| if len(text) > 300: | |
| rag_response += "..." | |
| else: | |
| rag_response = "Tôi tìm thấy thông tin nhưng không thể hiển thị chi tiết." | |
| # If multiple results, add count | |
| if len(context_used) > 1: | |
| rag_response += f"\n\n(Tìm thấy {len(context_used)} kết quả liên quan)" | |
| else: | |
| rag_response = "Xin lỗi, tôi không tìm thấy thông tin về câu hỏi này trong tài liệu." | |
| # Add resume hint | |
| resume_hint = "\n\n---\n💬 Vậy nha! Quay lại câu hỏi trước, bạn đã quyết định chưa?" | |
| return { | |
| "response": rag_response + resume_hint, | |
| "mode": "rag_with_resume", | |
| "scenario_active": True, | |
| "context_used": context_used | |
| } | |
| async def handle_pure_rag( | |
| request, | |
| session_id, | |
| advanced_rag, | |
| embedding_service, | |
| qdrant_service, | |
| tools_service, | |
| chat_history_collection, | |
| hf_token, | |
| conversation_service | |
| ): | |
| """ | |
| Handle pure RAG query (fallback to existing logic) | |
| """ | |
| # Import existing chat_endpoint logic | |
| from chat_endpoint import chat_endpoint | |
| # Call existing endpoint | |
| result = await chat_endpoint( | |
| request, | |
| conversation_service, | |
| tools_service, | |
| advanced_rag, | |
| embedding_service, | |
| qdrant_service, | |
| chat_history_collection, | |
| hf_token | |
| ) | |
| return { | |
| "response": result["response"], | |
| "mode": "rag", | |
| "context_used": result.get("context_used", []) | |
| } | |
| async def simple_rag_response(message, context, system_message): | |
| """Simple RAG response without LLM (for quick answers)""" | |
| if context: | |
| # Return top context | |
| top = context[0] | |
| return f"{top['metadata'].get('text', 'Không tìm thấy thông tin.')}" | |
| return "Xin lỗi, tôi không tìm thấy thông tin về điều này." | |