""" Hybrid Chat Endpoint: RAG + Scenario FSM Routes between scripted scenarios and knowledge retrieval """ from fastapi import HTTPException from datetime import datetime from typing import Dict, Any import json # Import scenario handlers from scenario_handlers.price_inquiry import PriceInquiryHandler from scenario_handlers.event_recommendation import EventRecommendationHandler from scenario_handlers.post_event_feedback import PostEventFeedbackHandler from scenario_handlers.exit_intent_rescue import ExitIntentRescueHandler async def hybrid_chat_endpoint( request, # ChatRequest conversation_service, intent_classifier, embedding_service, # NEW: For handlers qdrant_service, # NEW: For handlers tools_service, advanced_rag, chat_history_collection, hf_token, lead_storage ): """ Hybrid conversational chatbot: Scenario FSM + RAG Flow: 1. Load session & scenario state 2. Classify intent (scenario vs RAG) 3. Route: - Scenario: Execute FSM flow - RAG: Knowledge retrieval - RAG+Resume: Answer question then resume scenario 4. Save state & history """ try: # ===== SESSION MANAGEMENT ===== session_id = request.session_id if not session_id: session_id = conversation_service.create_session( metadata={"user_agent": "api", "created_via": "hybrid_chat"}, user_id=request.user_id ) print(f"✓ Created session: {session_id} (user: {request.user_id or 'anon'})") else: if not conversation_service.session_exists(session_id): raise HTTPException(404, detail=f"Session {session_id} not found") # ===== LOAD SCENARIO STATE ===== scenario_state = conversation_service.get_scenario_state(session_id) or {} # ===== INTENT CLASSIFICATION ===== intent = intent_classifier.classify(request.message, scenario_state) print(f"🎯 Intent: {intent}") # ===== ROUTING ===== if intent.startswith("scenario:"): # Route to scenario engine response_data = await handle_scenario( intent, request.message, session_id, scenario_state, scenario_engine, conversation_service, advanced_rag, lead_storage # NEW: Pass for action handling ) elif intent == "rag:with_resume": # Answer question but keep scenario active response_data = await handle_rag_with_resume( request, session_id, scenario_state, advanced_rag, embedding_service, qdrant_service, conversation_service ) else: # rag:general # Pure RAG query response_data = await handle_pure_rag( request, session_id, advanced_rag, embedding_service, qdrant_service, tools_service, chat_history_collection, hf_token, conversation_service ) # ===== SAVE HISTORY ===== conversation_service.add_message( session_id, "user", request.message, metadata={"intent": intent} ) conversation_service.add_message( session_id, "assistant", response_data["response"], metadata={ "mode": response_data.get("mode", "unknown"), "context_used": response_data.get("context_used", [])[:3] # Limit size request, session_id, scenario_state, advanced_rag, embedding_service, qdrant_service, conversation_service ): """ Handle RAG query mid-scenario Answer question properly, then remind user to continue scenario """ # Query RAG with proper search context_used = [] if request.use_rag: query_embedding = embedding_service.encode_text(request.message) results = qdrant_service.search( query_embedding=query_embedding, limit=request.top_k, score_threshold=request.score_threshold, ef=256 ) context_used = results # Build REAL RAG response (not placeholder) if context_used and len(context_used) > 0: # Format top results nicely top_result = context_used[0] text = top_result['metadata'].get('text', '') # Extract most relevant snippet (first 300 chars) if text: rag_response = text[:300].strip() if len(text) > 300: rag_response += "..." else: rag_response = "Tôi tìm thấy thông tin nhưng không thể hiển thị chi tiết." # If multiple results, add count if len(context_used) > 1: rag_response += f"\n\n(Tìm thấy {len(context_used)} kết quả liên quan)" else: rag_response = "Xin lỗi, tôi không tìm thấy thông tin về câu hỏi này trong tài liệu." # Add resume hint resume_hint = "\n\n---\n💬 Vậy nha! Quay lại câu hỏi trước, bạn đã quyết định chưa?" return { "response": rag_response + resume_hint, "mode": "rag_with_resume", "scenario_active": True, "context_used": context_used } async def handle_pure_rag( request, session_id, advanced_rag, embedding_service, qdrant_service, tools_service, chat_history_collection, hf_token, conversation_service ): """ Handle pure RAG query (fallback to existing logic) """ # Import existing chat_endpoint logic from chat_endpoint import chat_endpoint # Call existing endpoint result = await chat_endpoint( request, conversation_service, tools_service, advanced_rag, embedding_service, qdrant_service, chat_history_collection, hf_token ) return { "response": result["response"], "mode": "rag", "context_used": result.get("context_used", []) } async def simple_rag_response(message, context, system_message): """Simple RAG response without LLM (for quick answers)""" if context: # Return top context top = context[0] return f"{top['metadata'].get('text', 'Không tìm thấy thông tin.')}" return "Xin lỗi, tôi không tìm thấy thông tin về điều này."