from fastapi import FastAPI, UploadFile, File, Form, HTTPException from fastapi.responses import JSONResponse, StreamingResponse # Add StreamingResponse from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel from typing import Optional, List, Dict from PIL import Image import io import numpy as np import os from datetime import datetime from pymongo import MongoClient from huggingface_hub import InferenceClient from embedding_service import JinaClipEmbeddingService from qdrant_service import QdrantVectorService from advanced_rag import AdvancedRAG from cag_service import CAGService from pdf_parser import PDFIndexer from multimodal_pdf_parser import MultimodalPDFIndexer from conversation_service import ConversationService from tools_service import ToolsService from intent_classifier import IntentClassifier # NEW from scenario_engine import ScenarioEngine # NEW from lead_storage_service import LeadStorageService # NEW from hybrid_chat_endpoint import hybrid_chat_endpoint # NEW from hybrid_chat_stream import hybrid_chat_stream # NEW: Streaming # Initialize FastAPI app app = FastAPI( title="Event Social Media Embeddings & ChatbotRAG API", description="API để embeddings, search và ChatbotRAG với Jina CLIP v2 + Qdrant + MongoDB + LLM", version="2.0.0" ) # CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Initialize services print("Initializing services...") embedding_service = JinaClipEmbeddingService(model_path="jinaai/jina-clip-v2") collection_name = os.getenv("COLLECTION_NAME", "event_social_media") qdrant_service = QdrantVectorService( collection_name=collection_name, vector_size=embedding_service.get_embedding_dimension() ) print(f"✓ Qdrant collection: {collection_name}") # MongoDB connection mongodb_uri = os.getenv("MONGODB_URI", "mongodb+srv://truongtn7122003:7KaI9OT5KTUxWjVI@truongtn7122003.xogin4q.mongodb.net/") mongo_client = MongoClient(mongodb_uri) db = mongo_client[os.getenv("MONGODB_DB_NAME", "chatbot_rag")] documents_collection = db["documents"] chat_history_collection = db["chat_history"] print("✓ MongoDB connected") # Hugging Face token hf_token = os.getenv("HUGGINGFACE_TOKEN") if hf_token: print("✓ Hugging Face token configured") # Initialize Advanced RAG (Best Case 2025) advanced_rag = AdvancedRAG( embedding_service=embedding_service, qdrant_service=qdrant_service ) print("✓ Advanced RAG pipeline initialized (with Cross-Encoder)") # Initialize CAG Service (Semantic Cache) try: cag_service = CAGService( embedding_service=embedding_service, cache_collection="semantic_cache", vector_size=embedding_service.get_embedding_dimension(), similarity_threshold=0.9, ttl_hours=24 ) print("✓ CAG Service initialized (Semantic Caching enabled)") except Exception as e: print(f"Warning: CAG Service initialization failed: {e}") print("Continuing without semantic caching...") cag_service = None # Initialize PDF Indexer pdf_indexer = PDFIndexer( embedding_service=embedding_service, qdrant_service=qdrant_service, documents_collection=documents_collection ) print("✓ PDF Indexer initialized") # Initialize Multimodal PDF Indexer multimodal_pdf_indexer = MultimodalPDFIndexer( embedding_service=embedding_service, qdrant_service=qdrant_service, documents_collection=documents_collection ) print("✓ Multimodal PDF Indexer initialized") # Initialize Conversation Service conversations_collection = db["conversations"] conversation_service = ConversationService(conversations_collection, max_history=10) print("✓ Conversation Service initialized") # Initialize Tools Service tools_service = ToolsService(base_url="https://www.festavenue.site") print("✓ Tools Service initialized (Function Calling enabled)") # Initialize Hybrid Chat Components intent_classifier = IntentClassifier() print("✓ Intent Classifier initialized") scenario_engine = ScenarioEngine(scenarios_dir="scenarios") print("✓ Scenario Engine initialized") leads_collection = db["leads"] lead_storage = LeadStorageService(leads_collection) print("✓ Lead Storage Service initialized") print("✓ Services initialized successfully") # Pydantic models for embeddings class SearchRequest(BaseModel): text: Optional[str] = None limit: int = 10 score_threshold: Optional[float] = None text_weight: float = 0.5 image_weight: float = 0.5 class SearchResponse(BaseModel): id: str confidence: float metadata: dict class IndexResponse(BaseModel): success: bool id: str message: str # Pydantic models for ChatbotRAG class ChatRequest(BaseModel): message: str session_id: Optional[str] = None # Multi-turn conversation user_id: Optional[str] = None # User identifier for session tracking use_rag: bool = True top_k: int = 3 system_message: Optional[str] = """Bạn là trợ lý AI chuyên biệt cho hệ thống quản lý sự kiện và bán vé. Vai trò của bạn là trả lời các câu hỏi CHÍNH XÁC dựa trên dữ liệu được cung cấp từ hệ thống. Quy tắc tuyệt đối: - CHỈ trả lời câu hỏi liên quan đến: events, social media posts, PDFs đã upload, và dữ liệu trong knowledge base - KHÔNG trả lời câu hỏi ngoài phạm vi (tin tức, thời tiết, toán học, lập trình, tư vấn cá nhân, v.v.) - Nếu câu hỏi nằm ngoài phạm vi: BẮT BUỘC trả lời "Chúng tôi không thể trả lời câu hỏi này vì nó nằm ngoài vùng application xử lí." - Luôn ưu tiên thông tin từ context được cung cấp""" max_tokens: int = 512 temperature: float = 0.7 top_p: float = 0.95 hf_token: Optional[str] = None # Advanced RAG options use_advanced_rag: bool = True use_query_expansion: bool = True use_reranking: bool = False # Disabled - Cross-Encoder not good for Vietnamese use_compression: bool = True score_threshold: float = 0.5 # Function calling enable_tools: bool = True # Enable API tool calling class ChatResponse(BaseModel): response: str context_used: List[Dict] timestamp: str rag_stats: Optional[Dict] = None # Stats from advanced RAG pipeline session_id: Optional[str] = None # Session identifier for multi-turn (auto-generated if not provided) tool_calls: Optional[List[Dict]] = None # Track API calls made class AddDocumentRequest(BaseModel): text: str metadata: Optional[Dict] = None class AddDocumentResponse(BaseModel): success: bool doc_id: str message: str @app.get("/") async def root(): """Health check endpoint with comprehensive API documentation""" return { "status": "running", "service": "ChatbotRAG API", "version": "2.0.0", "vector_db": "Qdrant", "document_db": "MongoDB", "endpoints": { "chatbot_rag": { "API endpoint": "https://minhvtt-ChatbotRAG.hf.space/", "POST /chat": { "description": "Chat với AI sử dụng RAG (Retrieval-Augmented Generation)", "request": { "method": "POST", "content_type": "application/json", "body": { "message": "string (required) - User message/question", "use_rag": "boolean (optional, default: true) - Enable RAG context retrieval", "top_k": "integer (optional, default: 3) - Number of context documents to retrieve", "system_message": "string (optional) - Custom system prompt", "max_tokens": "integer (optional, default: 512) - Max response length", "temperature": "float (optional, default: 0.7, range: 0-1) - Creativity level", "top_p": "float (optional, default: 0.95) - Nucleus sampling", "hf_token": "string (optional) - Hugging Face token (fallback to env)" } }, "response": { "response": "string - AI generated response", "context_used": [ { "id": "string - Document ID", "confidence": "float - Relevance score", "metadata": { "text": "string - Retrieved context" } } ], "timestamp": "string - ISO 8601 timestamp" }, "example_request": { "message": "Dao có nguy hiểm không?", "use_rag": True, "top_k": 3, "temperature": 0.7 }, "example_response": { "response": "Dựa trên thông tin trong database, dao được phân loại là vũ khí nguy hiểm. Dao sắc có thể gây thương tích nghiêm trọng nếu không sử dụng đúng cách. Cần tuân thủ các quy định an toàn khi sử dụng.", "context_used": [ { "id": "68a3fc14c853d7621e8977b5", "confidence": 0.92, "metadata": { "text": "Vũ khí" } }, { "id": "68a3fc4cc853d7621e8977b6", "confidence": 0.85, "metadata": { "text": "Con dao sắc" } } ], "timestamp": "2025-10-13T10:30:45.123456" }, "notes": [ "RAG retrieves relevant context from vector DB before generating response", "LLM uses context to provide accurate, grounded answers", "Requires HUGGINGFACE_TOKEN environment variable or hf_token in request" ] }, "POST /documents": { "description": "Add document to knowledge base for RAG", "request": { "method": "POST", "content_type": "application/json", "body": { "text": "string (required) - Document text content", "metadata": "object (optional) - Additional metadata (source, category, etc.)" } }, "response": { "success": "boolean", "doc_id": "string - MongoDB ObjectId", "message": "string - Status message" }, "example_request": { "text": "Để tạo event mới: Click nút 'Tạo Event' ở góc trên bên phải màn hình. Điền thông tin sự kiện bao gồm tên, ngày giờ, địa điểm. Click Lưu để hoàn tất.", "metadata": { "source": "user_guide.pdf", "section": "create_event", "page": 5, "category": "tutorial" } }, "example_response": { "success": True, "doc_id": "67a9876543210fedcba98765", "message": "Document added successfully with ID: 67a9876543210fedcba98765" } }, "POST /rag/search": { "description": "Search in knowledge base (similar to /search/text but for RAG documents)", "request": { "method": "POST", "content_type": "multipart/form-data", "body": { "query": "string (required) - Search query", "top_k": "integer (optional, default: 5) - Number of results", "score_threshold": "float (optional, default: 0.5) - Minimum relevance score" } }, "response": [ { "id": "string", "confidence": "float", "metadata": { "text": "string", "source": "string" } } ], "example_request": { "query": "cách tạo sự kiện mới", "top_k": 3, "score_threshold": 0.6 } }, "GET /history": { "description": "Get chat conversation history", "request": { "method": "GET", "query_params": { "limit": "integer (optional, default: 10) - Number of messages", "skip": "integer (optional, default: 0) - Pagination offset" } }, "response": { "history": [ { "user_message": "string", "assistant_response": "string", "context_used": "array", "timestamp": "string - ISO 8601" } ], "total": "integer - Total messages count" }, "example_request": "GET /history?limit=5&skip=0", "example_response": { "history": [ { "user_message": "Dao có nguy hiểm không?", "assistant_response": "Dao được phân loại là vũ khí...", "context_used": [], "timestamp": "2025-10-13T10:30:45.123456" } ], "total": 15 } }, "DELETE /documents/{doc_id}": { "description": "Delete document from knowledge base", "request": { "method": "DELETE", "path_params": { "doc_id": "string - MongoDB ObjectId" } }, "response": { "success": "boolean", "message": "string" } } } }, "usage_examples": { "curl_chat": "curl -X POST 'http://localhost:8000/chat' -H 'Content-Type: application/json' -d '{\"message\": \"Dao có nguy hiểm không?\", \"use_rag\": true}'", "python_chat": """ import requests response = requests.post( 'http://localhost:8000/chat', json={ 'message': 'Nút tạo event ở đâu?', 'use_rag': True, 'top_k': 3 } ) print(response.json()['response']) """ }, "authentication": { "embeddings_apis": "No authentication required", "chat_api": "Requires HUGGINGFACE_TOKEN (env variable or request body)" }, "rate_limits": { "embeddings": "No limit", "chat_with_llm": "Limited by Hugging Face API (free tier: ~1000 requests/hour)" }, "error_codes": { "400": "Bad Request - Missing required fields or invalid input", "401": "Unauthorized - Invalid Hugging Face token", "404": "Not Found - Document ID not found", "500": "Internal Server Error - Server or database error" }, "links": { "docs": "http://localhost:8000/docs", "redoc": "http://localhost:8000/redoc", "openapi": "http://localhost:8000/openapi.json" } } @app.post("/index", response_model=IndexResponse) async def index_data( id: str = Form(...), text: str = Form(...), image: Optional[UploadFile] = File(None) ): """ Index data vào vector database Body: - id: Document ID (event ID, post ID, etc.) - text: Text content (tiếng Việt supported) - image: Image file (optional) Returns: - success: True/False - id: Document ID - message: Status message """ try: # Prepare embeddings text_embedding = None image_embedding = None # Encode text (tiếng Việt) if text and text.strip(): text_embedding = embedding_service.encode_text(text) # Encode image nếu có if image: image_bytes = await image.read() pil_image = Image.open(io.BytesIO(image_bytes)).convert('RGB') image_embedding = embedding_service.encode_image(pil_image) # Combine embeddings if text_embedding is not None and image_embedding is not None: # Average của text và image embeddings combined_embedding = np.mean([text_embedding, image_embedding], axis=0) elif text_embedding is not None: combined_embedding = text_embedding elif image_embedding is not None: combined_embedding = image_embedding else: raise HTTPException(status_code=400, detail="Phải cung cấp ít nhất text hoặc image") # Normalize combined_embedding = combined_embedding / np.linalg.norm(combined_embedding, axis=1, keepdims=True) # Index vào Qdrant metadata = { "text": text, "has_image": image is not None, "image_filename": image.filename if image else None } result = qdrant_service.index_data( doc_id=id, embedding=combined_embedding, metadata=metadata ) return IndexResponse( success=True, id=result["original_id"], # Trả về MongoDB ObjectId message=f"Đã index thành công document {result['original_id']} (Qdrant UUID: {result['qdrant_id']})" ) except Exception as e: raise HTTPException(status_code=500, detail=f"Lỗi khi index: {str(e)}") @app.post("/search", response_model=List[SearchResponse]) async def search( text: Optional[str] = Form(None), image: Optional[UploadFile] = File(None), limit: int = Form(10), score_threshold: Optional[float] = Form(None), text_weight: float = Form(0.5), image_weight: float = Form(0.5) ): """ Search similar documents bằng text và/hoặc image Body: - text: Query text (tiếng Việt supported) - image: Query image (optional) - limit: Số lượng kết quả (default: 10) - score_threshold: Minimum confidence score (0-1) - text_weight: Weight cho text search (default: 0.5) - image_weight: Weight cho image search (default: 0.5) Returns: - List of results với id, confidence, và metadata """ try: # Prepare query embeddings text_embedding = None image_embedding = None # Encode text query if text and text.strip(): text_embedding = embedding_service.encode_text(text) # Encode image query if image: image_bytes = await image.read() pil_image = Image.open(io.BytesIO(image_bytes)).convert('RGB') image_embedding = embedding_service.encode_image(pil_image) # Validate input if text_embedding is None and image_embedding is None: raise HTTPException(status_code=400, detail="Phải cung cấp ít nhất text hoặc image để search") # Hybrid search với Qdrant results = qdrant_service.hybrid_search( text_embedding=text_embedding, image_embedding=image_embedding, text_weight=text_weight, image_weight=image_weight, limit=limit, score_threshold=score_threshold, ef=256 # High accuracy search ) # Format response return [ SearchResponse( id=result["id"], confidence=result["confidence"], metadata=result["metadata"] ) for result in results ] except Exception as e: raise HTTPException(status_code=500, detail=f"Lỗi khi search: {str(e)}") @app.post("/search/text", response_model=List[SearchResponse]) async def search_by_text( text: str = Form(...), limit: int = Form(10), score_threshold: Optional[float] = Form(None) ): """ Search chỉ bằng text (tiếng Việt) Body: - text: Query text (tiếng Việt) - limit: Số lượng kết quả - score_threshold: Minimum confidence score Returns: - List of results """ try: # Encode text text_embedding = embedding_service.encode_text(text) # Search results = qdrant_service.search( query_embedding=text_embedding, limit=limit, score_threshold=score_threshold, ef=256 ) return [ SearchResponse( id=result["id"], confidence=result["confidence"], metadata=result["metadata"] ) for result in results ] except Exception as e: raise HTTPException(status_code=500, detail=f"Lỗi khi search: {str(e)}") @app.post("/search/image", response_model=List[SearchResponse]) async def search_by_image( image: UploadFile = File(...), limit: int = Form(10), score_threshold: Optional[float] = Form(None) ): """ Search chỉ bằng image Body: - image: Query image - limit: Số lượng kết quả - score_threshold: Minimum confidence score Returns: - List of results """ try: # Encode image image_bytes = await image.read() pil_image = Image.open(io.BytesIO(image_bytes)).convert('RGB') image_embedding = embedding_service.encode_image(pil_image) # Search results = qdrant_service.search( query_embedding=image_embedding, limit=limit, score_threshold=score_threshold, ef=256 ) return [ SearchResponse( id=result["id"], confidence=result["confidence"], metadata=result["metadata"] ) for result in results ] except Exception as e: raise HTTPException(status_code=500, detail=f"Lỗi khi search: {str(e)}") @app.delete("/delete/{doc_id}") async def delete_document(doc_id: str): """ Delete document by ID (MongoDB ObjectId hoặc UUID) Args: - doc_id: Document ID to delete Returns: - Success message """ try: qdrant_service.delete_by_id(doc_id) return {"success": True, "message": f"Đã xóa document {doc_id}"} except Exception as e: raise HTTPException(status_code=500, detail=f"Lỗi khi xóa: {str(e)}") @app.get("/document/{doc_id}") async def get_document(doc_id: str): """ Get document by ID (MongoDB ObjectId hoặc UUID) Args: - doc_id: Document ID (MongoDB ObjectId) Returns: - Document data """ try: doc = qdrant_service.get_by_id(doc_id) if doc: return { "success": True, "data": doc } raise HTTPException(status_code=404, detail=f"Không tìm thấy document {doc_id}") except HTTPException: raise except Exception as e: raise HTTPException(status_code=500, detail=f"Lỗi khi get document: {str(e)}") @app.get("/stats") async def get_stats(): """ Lấy thông tin thống kê collection Returns: - Collection statistics """ try: info = qdrant_service.get_collection_info() return info except Exception as e: raise HTTPException(status_code=500, detail=f"Lỗi khi lấy stats: {str(e)}") # ============================================ # ChatbotRAG Endpoints # ============================================ # Import chat endpoint logic from hybrid_chat_endpoint import hybrid_chat_endpoint @app.post("/chat", response_model=ChatResponse) async def chat(request: ChatRequest): """ Hybrid Conversational Chatbot: Scenario FSM + RAG Features: - ✅ Scenario-based flows (giá vé, đặt vé kịch bản) - ✅ RAG knowledge retrieval (PDF, documents) - ✅ Mid-scenario RAG interruption (answer off-topic questions) - ✅ Lead collection (email, phone → MongoDB) - ✅ Multi-turn conversations with state management - ✅ Function calling (external API integration) Flow: 1. User message → Intent classification 2. Route to: Scenario FSM OR RAG OR Hybrid 3. Execute flow + save state 4. Save conversation history Example 1 - Start Price Inquiry Scenario: ``` POST /chat { "message": "giá vé bao nhiêu?", "use_rag": true } Response: { "response": "Hello 👋 Bạn muốn xem giá của show nào để mình báo đúng nè?", "session_id": "abc-123", "mode": "scenario", "scenario_active": true } ``` Example 2 - Continue Scenario: ``` POST /chat { "message": "Show A", "session_id": "abc-123" } Response: { "response": "Bạn đi 1 mình hay đi nhóm...", "mode": "scenario", "scenario_active": true } ``` Example 3 - Mid-scenario RAG Question: ``` POST /chat { "message": "sự kiện mấy giờ?", "session_id": "abc-123" } # Bot answers from RAG, then resumes scenario ``` Example 4 - Pure RAG Query: ``` POST /chat { "message": "địa điểm sự kiện ở đâu?", "use_rag": true } # Normal RAG response (không trigger scenario) ``` """ return await hybrid_chat_endpoint( request=request, conversation_service=conversation_service, intent_classifier=intent_classifier, embedding_service=embedding_service, # NEW: Required by handlers qdrant_service=qdrant_service, # NEW: Required by handlers tools_service=tools_service, advanced_rag=advanced_rag, chat_history_collection=chat_history_collection, hf_token=hf_token, lead_storage=lead_storage ) @app.post("/chat/stream") async def chat_stream(request: ChatRequest): """ Streaming Chat Endpoint (SSE - Server-Sent Events) Real-time token-by-token response display Features: - ✅ Real-time "typing" effect - ✅ Status updates (thinking, searching) - ✅ Scenario: Simulated streaming (smooth typing) - ✅ RAG: Real LLM streaming - ✅ HTTP/2 compatible Event Types: - status: Bot status ("Đang suy nghĩ...", "Đang tìm kiếm...") - token: Text chunks - metadata: Session ID, context info - done: Completion signal - error: Error messages Example - JavaScript Client: ```javascript const response = await fetch('/chat/stream', { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify({ message: "giá vé bao nhiêu?", use_rag: true }) }); const reader = response.body.getReader(); const decoder = new TextDecoder(); while (true) { const {done, value} = await reader.read(); if (done) break; const chunk = decoder.decode(value); const lines = chunk.split('\n\n'); for (const line of lines) { if (line.startsWith('event: token')) { const data = line.split('data: ')[1]; displayToken(data); // Append to UI } else if (line.startsWith('event: done')) { console.log('Stream complete'); } } } ``` Example - EventSource (simpler but less control): ```javascript // Note: EventSource doesn't support POST, need to use fetch const eventSource = new EventSource('/chat/stream?message=hello'); eventSource.addEventListener('token', (e) => { displayToken(e.data); }); eventSource.addEventListener('done', (e) => { eventSource.close(); }); ``` """ return StreamingResponse( hybrid_chat_stream( request=request, conversation_service=conversation_service, intent_classifier=intent_classifier, scenario_engine=scenario_engine, advanced_rag=advanced_rag, embedding_service=embedding_service, qdrant_service=qdrant_service, hf_token=hf_token, lead_storage=lead_storage ), media_type="text/event-stream", headers={ "Cache-Control": "no-cache", "Connection": "keep-alive", "X-Accel-Buffering": "no" # Disable nginx buffering } ) @app.get("/chat/history/{session_id}") async def get_conversation_history(session_id: str, include_metadata: bool = False): """ Get conversation history for a session Args: session_id: Session identifier include_metadata: Include metadata (rag_stats, tool_calls) in response Returns: List of messages with role and content Example: ``` GET /chat/history/abc-123?include_metadata=true ``` """ if not conversation_service.session_exists(session_id): raise HTTPException( status_code=404, detail=f"Session {session_id} not found or has expired" ) history = conversation_service.get_conversation_history( session_id, include_metadata=include_metadata ) session_info = conversation_service.get_session_info(session_id) return { "session_id": session_id, "message_count": len(history), "messages": history, "created_at": session_info.get("created_at") if session_info else None, "updated_at": session_info.get("updated_at") if session_info else None } @app.get("/chat/sessions") async def list_sessions( limit: int = 50, skip: int = 0, sort_by: str = "updated_at", user_id: Optional[str] = None # NEW: Filter by user ): """ List all conversation sessions Query Parameters: limit: Maximum sessions to return (default: 50, max: 100) skip: Number of sessions to skip for pagination (default: 0) sort_by: Field to sort by - 'created_at' or 'updated_at' (default: updated_at) user_id: Filter sessions by user_id (optional) Returns: List of sessions with metadata and message counts Examples: ``` GET /chat/sessions # All sessions GET /chat/sessions?user_id=user_123 # Only user_123's sessions GET /chat/sessions?limit=20&skip=0&sort_by=updated_at ``` """ # Validate limit if limit > 100: limit = 100 if limit < 1: limit = 1 # Validate sort_by if sort_by not in ["created_at", "updated_at"]: raise HTTPException( status_code=400, detail="sort_by must be 'created_at' or 'updated_at'" ) sessions = conversation_service.list_sessions( limit=limit, skip=skip, sort_by=sort_by, descending=True, user_id=user_id # NEW: Pass user_id filter ) total_sessions = conversation_service.count_sessions(user_id=user_id) # NEW: Count with filter return { "total": total_sessions, "limit": limit, "skip": skip, "count": len(sessions), "user_id": user_id, # NEW: Include filter in response "sessions": sessions } @app.get("/scenarios") async def list_scenarios(): """ Get list of all available scenarios for proactive chat FE use case: - Random pick scenario để bắt đầu chat chủ động - Hiển thị menu các scenario available Returns: List of scenarios with metadata Example: ``` GET /scenarios Response: { "scenarios": [ { "scenario_id": "price_inquiry", "name": "Hỏi giá vé", "description": "Tư vấn giá vé và gửi PDF", "triggers": ["giá vé", "bao nhiêu"], "category": "sales" }, ... ] } ``` """ scenarios_list = [] for scenario_id, scenario_data in scenario_engine.scenarios.items(): scenarios_list.append({ "scenario_id": scenario_id, "name": scenario_data.get("name", scenario_id), "description": scenario_data.get("description", ""), "triggers": scenario_data.get("triggers", []), "category": scenario_data.get("category", "general"), "priority": scenario_data.get("priority", "normal"), "estimated_duration": scenario_data.get("estimated_duration", "unknown") }) return { "total": len(scenarios_list), "scenarios": scenarios_list } @app.post("/scenarios/{scenario_id}/start") async def start_scenario_proactive( scenario_id: str, request_body: Optional[Dict] = None ): """ Start a scenario proactively with optional initial data Use cases: 1. FE picks random scenario 2. BE triggers scenario based on user action (after purchase, exit intent, etc.) 3. Inject context data (event_name, mood, etc.) Example 1 - Simple start: ``` POST /scenarios/price_inquiry/start {} Response: { "session_id": "abc-123", "message": "Hello 👋 Bạn muốn xem giá..." } ``` Example 2 - With initial data (post-event feedback): ``` POST /scenarios/post_event_feedback/start { "initial_data": { "event_name": "Hòa Nhạc Mùa Xuân", "event_date": "2024-11-29", "event_id": "evt_123" }, "session_id": "existing-session", // optional "user_id": "user_456" // optional } Response: { "session_id": "abc-123", "message": "Cảm ơn bạn đã tham dự *Hòa Nhạc Mùa Xuân* hôm qua!" } ``` Example 3 - Mood recommendation: ``` POST /scenarios/mood_recommendation/start { "initial_data": { "mood": "chill", "preferred_genre": "acoustic" } } ``` """ # Parse request body body = request_body or {} initial_data = body.get("initial_data", {}) session_id = body.get("session_id") user_id = body.get("user_id") # Create or use existing session if not session_id: session_id = conversation_service.create_session( metadata={"started_by": "proactive", "scenario": scenario_id}, user_id=user_id ) # Start scenario with initial data result = scenario_engine.start_scenario(scenario_id, initial_data) if result.get("new_state"): conversation_service.set_scenario_state(session_id, result["new_state"]) # Save bot message to history conversation_service.add_message( session_id, "assistant", result["message"], metadata={"proactive": True, "scenario": scenario_id, "initial_data": initial_data} ) return { "session_id": session_id, "scenario_id": scenario_id, "message": result["message"], "scenario_active": True, "proactive": True } @app.post("/chat/clear-session") async def clear_chat_session(session_id: str): """ Clear conversation history for a session Args: session_id: Session identifier to clear Returns: Success message Example: ``` POST /chat/clear-session?session_id=abc-123 ``` """ success = conversation_service.clear_session(session_id) if success: return { "success": True, "message": f"Session {session_id} cleared successfully" } else: raise HTTPException( status_code=404, detail=f"Session {session_id} not found or already cleared" ) @app.get("/chat/session/{session_id}") async def get_session_info(session_id: str): """ Get metadata about a conversation session Args: session_id: Session identifier Returns: Session info including creation time and message count Example: ``` GET /chat/session/abc-123 ``` """ session = conversation_service.get_session_info(session_id) if not session: raise HTTPException( status_code=404, detail=f"Session {session_id} not found" ) # Get message count history = conversation_service.get_conversation_history( session_id, include_metadata=True ) return { "session_id": session["session_id"], "created_at": session["created_at"], "updated_at": session["updated_at"], "message_count": len(history), "metadata": session.get("metadata", {}) } @app.post("/documents", response_model=AddDocumentResponse) async def add_document(request: AddDocumentRequest): """ Add document to knowledge base Body: - text: Document text - metadata: Additional metadata (optional) Returns: - success: True/False - doc_id: MongoDB document ID - message: Status message """ try: # Save to MongoDB doc_data = { "text": request.text, "metadata": request.metadata or {}, "created_at": datetime.utcnow() } result = documents_collection.insert_one(doc_data) doc_id = str(result.inserted_id) # Generate embedding embedding = embedding_service.encode_text(request.text) # Index to Qdrant qdrant_service.index_data( doc_id=doc_id, embedding=embedding, metadata={ "text": request.text, "source": "api", **(request.metadata or {}) } ) return AddDocumentResponse( success=True, doc_id=doc_id, message=f"Document added successfully with ID: {doc_id}" ) except Exception as e: raise HTTPException(status_code=500, detail=f"Error: {str(e)}") @app.post("/documents/upload/pdf") async def upload_pdf( file: UploadFile = File(...), metadata: Optional[str] = Form(None) ): """ Upload PDF file and index into knowledge base Features: - Extracts text from PDF - Detects image URLs in text/markdown - Chunks content intelligently - Indexes all chunks into Qdrant for RAG Args: file: PDF file to upload metadata: Optional JSON string with metadata (title, author, etc.) Returns: Success status, document ID, and indexing stats Example: ```bash curl -X POST http://localhost:8000/documents/upload/pdf \ -F "file=@document.pdf" \ -F 'metadata={"title": "User Guide", "category": "documentation"}' ``` """ try: # Validate file type if not file.filename.endswith('.pdf'): raise HTTPException( status_code=400, detail="Only PDF files are supported" ) # Read file bytes pdf_bytes = await file.read() # Parse metadata if provided import json doc_metadata = {} if metadata: try: doc_metadata = json.loads(metadata) except json.JSONDecodeError: raise HTTPException( status_code=400, detail="Invalid metadata JSON format" ) # Generate unique document ID from bson import ObjectId document_id = str(ObjectId()) # Add upload timestamp doc_metadata['uploaded_at'] = datetime.utcnow().isoformat() doc_metadata['original_filename'] = file.filename # Index PDF using multimodal parser result = multimodal_pdf_indexer.index_pdf_bytes( pdf_bytes=pdf_bytes, document_id=document_id, filename=file.filename, document_metadata=doc_metadata ) return { "success": True, "document_id": document_id, "filename": file.filename, "chunks_indexed": result['chunks_indexed'], "images_found": result.get('images_found', 0), "message": f"PDF uploaded and indexed: {result['chunks_indexed']} chunks, {result.get('images_found', 0)} image URLs found" } except HTTPException: raise except Exception as e: raise HTTPException( status_code=500, detail=f"Error processing PDF: {str(e)}" ) @app.post("/rag/search", response_model=List[SearchResponse]) async def rag_search( query: str = Form(...), top_k: int = Form(5), score_threshold: Optional[float] = Form(0.5) ): """ Search in knowledge base Body: - query: Search query - top_k: Number of results (default: 5) - score_threshold: Minimum score (default: 0.5) Returns: - results: List of matching documents """ try: # Generate query embedding query_embedding = embedding_service.encode_text(query) # Search in Qdrant results = qdrant_service.search( query_embedding=query_embedding, limit=top_k, score_threshold=score_threshold ) return [ SearchResponse( id=result["id"], confidence=result["confidence"], metadata=result["metadata"] ) for result in results ] except Exception as e: raise HTTPException(status_code=500, detail=f"Error: {str(e)}") @app.get("/history") async def get_history(limit: int = 10, skip: int = 0): """ Get chat history Query params: - limit: Number of messages to return (default: 10) - skip: Number of messages to skip (default: 0) Returns: - history: List of chat messages """ try: history = list( chat_history_collection .find({}, {"_id": 0}) .sort("timestamp", -1) .skip(skip) .limit(limit) ) # Convert datetime to string for msg in history: if "timestamp" in msg: msg["timestamp"] = msg["timestamp"].isoformat() return { "history": history, "total": chat_history_collection.count_documents({}) } except Exception as e: raise HTTPException(status_code=500, detail=f"Error: {str(e)}") @app.delete("/documents/{doc_id}") async def delete_document_from_kb(doc_id: str): """ Delete document from knowledge base Args: - doc_id: Document ID (MongoDB ObjectId) Returns: - success: True/False - message: Status message """ try: # Delete from MongoDB result = documents_collection.delete_one({"_id": doc_id}) # Delete from Qdrant if result.deleted_count > 0: qdrant_service.delete_by_id(doc_id) return {"success": True, "message": f"Document {doc_id} deleted from knowledge base"} else: raise HTTPException(status_code=404, detail=f"Document {doc_id} not found") except HTTPException: raise except Exception as e: raise HTTPException(status_code=500, detail=f"Error: {str(e)}") if __name__ == "__main__": import uvicorn uvicorn.run( app, host="0.0.0.0", port=8000, log_level="info" )