File size: 7,748 Bytes
acb0b29
c3c908f
 
 
 
 
e836611
 
 
acb0b29
c3c908f
e836611
c3c908f
e836611
c3c908f
e836611
 
c3c908f
e836611
 
 
 
 
c3c908f
e836611
c3c908f
e836611
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3c908f
e836611
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3c908f
e836611
c3c908f
 
 
 
 
e836611
c3c908f
 
 
 
 
 
 
 
 
e836611
c3c908f
 
 
 
 
 
 
 
 
 
e836611
c3c908f
 
 
 
 
 
 
e836611
c3c908f
 
 
 
 
 
 
 
 
 
 
 
 
 
e836611
c3c908f
 
 
 
 
 
 
 
 
e836611
c3c908f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e836611
c3c908f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e836611
c3c908f
 
 
 
 
 
 
 
 
 
 
 
e836611
 
 
 
 
 
 
 
 
 
 
 
 
 
c3c908f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f94ca9
c3c908f
 
50d7dc5
c3c908f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import spaces
import gradio as gr
import torch
import librosa
import numpy as np
from inference import inference
from huggingface_hub import hf_hub_download
import os
from pathlib import Path


def download_models_from_hub():
    """
    Download model checkpoints from Hugging Face Model Hub
    """
    model_dir = Path("checkpoints")
    model_dir.mkdir(exist_ok=True)
    
    # Original checkpoint filenames on HF Hub
    models = {
        "main": "EmbeddingModel_MERT_768-epoch=0073-val_loss=0.1058-val_acc=0.9585-val_f1=0.9366-val_precision=0.9936-val_recall=0.8857.ckpt",
        "backup": "step=007000-val_loss=0.1831-val_acc=0.9278.ckpt"
    }
    
    downloaded_models = {}
    
    for model_name, filename in models.items():
        local_path = model_dir / filename
        
        if not local_path.exists():
            print(f"πŸ“₯ Downloading {model_name} model from Hugging Face Hub...")
            model_path = hf_hub_download(
                repo_id="mippia/FST-checkpoints",
                filename=filename,
                local_dir=str(model_dir),
                local_dir_use_symlinks=False
            )
            print(f"βœ… {model_name} model downloaded successfully!")
            downloaded_models[model_name] = str(local_path)
        else:
            print(f"βœ… {model_name} model already exists locally")
            downloaded_models[model_name] = str(local_path)
    
    return downloaded_models

@spaces.GPU
def detect_ai_audio(audio_file):
    """
    Detect whether the uploaded audio file was generated by AI
    """
    if audio_file is None:
        return """
        <div style="text-align: center; padding: 20px; border-radius: 10px; background: linear-gradient(135deg, #ff6b6b22, #ff6b6b11);">
            <div style="font-size: 18px; color: #ff6b6b;">⚠️ Please upload an audio file</div>
        </div>
        """
    
    try:
        result = inference(audio_file)
        
        # Format result with better styling
        if "AI" in str(result).upper() or "artificial" in str(result).lower() or "fake" in str(result).lower():
            status = "AI Generated"
            color = "#ff6b6b"
            confidence = "High confidence this audio was generated by AI"
        else:
            status = "Human Generated"  
            color = "#51cf66"
            confidence = "High confidence this audio was created by humans"
        
        formatted_result = f"""
        <div style="text-align: center; padding: 25px; border-radius: 15px; background: linear-gradient(135deg, {color}22, {color}11); border: 2px solid {color}33;">
            <div style="font-size: 28px; font-weight: bold; color: {color}; margin-bottom: 10px;">{status}</div>
            <div style="font-size: 16px; color: #666; margin-bottom: 8px;">{confidence}</div>
            <div style="font-size: 14px; color: #888;">Raw output: {result}</div>
        </div>
        """
        
        return formatted_result
        
    except Exception as e:
        error_result = f"""
        <div style="text-align: center; padding: 20px; border-radius: 10px; background: linear-gradient(135deg, #ff6b6b22, #ff6b6b11);">
            <div style="font-size: 20px; font-weight: bold; color: #ff6b6b; margin-bottom: 8px;">Error</div>
            <div style="font-size: 14px; color: #666;">Failed to process audio: {str(e)}</div>
        </div>
        """
        return error_result

# Custom CSS for modern design
custom_css = """
/* Global background gradient */
.gradio-container {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
    min-height: 100vh;
}

/* Main container styling */
.main-container {
    background: rgba(255, 255, 255, 0.95) !important;
    backdrop-filter: blur(10px) !important;
    border-radius: 20px !important;
    box-shadow: 0 20px 40px rgba(0,0,0,0.1) !important;
    margin: 20px !important;
    padding: 30px !important;
}

/* Title styling */
h1 {
    background: linear-gradient(135deg, #667eea, #764ba2) !important;
    -webkit-background-clip: text !important;
    -webkit-text-fill-color: transparent !important;
    text-align: center !important;
    font-size: 3em !important;
    font-weight: 800 !important;
    margin-bottom: 10px !important;
}

/* Description text */
.gradio-markdown p {
    text-align: center !important;
    font-size: 1.2em !important;
    color: #555 !important;
    margin-bottom: 30px !important;
}

/* Audio upload component */
.upload-container {
    background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%) !important;
    border-radius: 15px !important;
    padding: 20px !important;
    border: none !important;
    box-shadow: 0 10px 30px rgba(240, 147, 251, 0.3) !important;
    transition: all 0.3s ease !important;
}

.upload-container:hover {
    transform: translateY(-5px) !important;
    box-shadow: 0 15px 40px rgba(240, 147, 251, 0.4) !important;
}

/* Output container */
.output-container {
    background: linear-gradient(135deg, #a8edea 0%, #fed6e3 100%) !important;
    border-radius: 15px !important;
    padding: 20px !important;
    border: none !important;
    box-shadow: 0 10px 30px rgba(168, 237, 234, 0.3) !important;
    min-height: 150px !important;
}

/* Button styling */
.gr-button {
    background: linear-gradient(135deg, #667eea, #764ba2) !important;
    border: none !important;
    border-radius: 25px !important;
    padding: 12px 30px !important;
    font-weight: 600 !important;
    color: white !important;
    box-shadow: 0 5px 15px rgba(102, 126, 234, 0.4) !important;
    transition: all 0.3s ease !important;
}

.gr-button:hover {
    transform: translateY(-2px) !important;
    box-shadow: 0 8px 25px rgba(102, 126, 234, 0.6) !important;
}

/* Animation */
@keyframes fadeInUp {
    from {
        opacity: 0;
        transform: translateY(30px);
    }
    to {
        opacity: 1;
        transform: translateY(0);
    }
}

.gradio-container > div {
    animation: fadeInUp 0.8s ease-out !important;
}

/* Responsive design */
@media (max-width: 768px) {
    h1 {
        font-size: 2em !important;
    }
    
    .main-container {
        margin: 10px !important;
        padding: 20px !important;
    }
}
"""

# Initialize the app
print("πŸš€ Starting FST AI Audio Detection App...")
print("πŸ“¦ Initializing models...")

# Download models at startup
models = download_models_from_hub()

# Check if main model is available
if models.get("main"):
    print("βœ… Main model ready for inference")
else:
    print("⚠️ Warning: Main model not available, app may not work properly")

# Create Gradio interface
demo = gr.Interface(
    fn=detect_ai_audio,
    inputs=gr.Audio(
        type="filepath", 
        label="Upload Audio File",
        elem_classes=["upload-container"]
    ),
    outputs=gr.HTML(
        label="Detection Result",
        elem_classes=["output-container"]
    ),
    title="AI Audio Detector",
    description="""
    <div style="text-align: center; font-size: 1.2em; color: #555; margin: 20px 0;">
        <p><strong>Advanced AI technology</strong> to accurately detect whether uploaded audio was generated by AI!</p>
        <p>Supported formats: MP3, WAV, M4A, FLAC and various audio formats</p>
        <p>Powered by Fusion Segment Transformer (FST) - ICASSP 2026</p>
    </div>
    """,
    examples=[],
    css=custom_css,
    theme=gr.themes.Soft(
        primary_hue="blue",
        secondary_hue="purple",
        neutral_hue="gray",
        font=[gr.themes.GoogleFont("Inter"), "Arial", "sans-serif"]
    ),
    elem_classes=["main-container"]
)

if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True,
        show_api=False,
        show_error=True
    )