File size: 8,556 Bytes
c3c908f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import glob
import torch
import torchaudio
import librosa
import numpy as np
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset
from imblearn.over_sampling import RandomOverSampler
from transformers import Wav2Vec2Processor
import torch
import torchaudio
from torch.nn.utils.rnn import pad_sequence
from transformers import Wav2Vec2FeatureExtractor
import scipy.signal as signal
import scipy.signal
# class FakeMusicCapsDataset(Dataset):
#     def __init__(self, file_paths, labels, sr=16000, target_duration=10.0):
#         self.file_paths = file_paths
#         self.labels = labels
#         self.sr = sr
#         self.target_samples = int(target_duration * sr)  # Fixed length: 5 seconds

#     def __len__(self):
#         return len(self.file_paths)

#     def __getitem__(self, idx):
#         audio_path = self.file_paths[idx]
#         label = self.labels[idx]

#         waveform, sr = torchaudio.load(audio_path)
#         waveform = torchaudio.transforms.Resample(orig_freq=sr, new_freq=self.sr)(waveform)
#         waveform = waveform.mean(dim=0)  # Convert to mono
#         waveform = waveform.squeeze(0)


#         current_samples = waveform.shape[0]

#         # **Ensure waveform is exactly `target_samples` long**
#         if current_samples > self.target_samples:
#             waveform = waveform[:self.target_samples]  # Truncate if too long
#         elif current_samples < self.target_samples:
#             pad_length = self.target_samples - current_samples
#             waveform = torch.nn.functional.pad(waveform, (0, pad_length))  # Pad if too short

#         return waveform.unsqueeze(0), torch.tensor(label, dtype=torch.long)  # Ensure 2D shape (1, target_samples)

class FakeMusicCapsDataset(Dataset):
    def __init__(self, file_paths, labels, sr=16000, target_duration=10.0):
        self.file_paths = file_paths
        self.labels = labels
        self.sr = sr
        self.target_samples = int(target_duration * sr)  # Fixed length: 10 seconds
        self.processor = Wav2Vec2FeatureExtractor.from_pretrained("m-a-p/MERT-v1-95M", trust_remote_code=True)

    def __len__(self):
        return len(self.file_paths)

    def highpass_filter(self, y, sr, cutoff=500, order=5): 
            if isinstance(sr, np.ndarray):
                # print(f"[ERROR] sr is an array, taking mean value. Original sr: {sr}")
                sr = np.mean(sr)  
            if not isinstance(sr, (int, float)):
                raise ValueError(f"[ERROR] sr must be a number, but got {type(sr)}: {sr}")
            # print(f"[DEBUG] Highpass filter using sr={sr}, cutoff={cutoff}")  
            if sr <= 0:
                raise ValueError(f"Invalid sample rate: {sr}. It must be greater than 0.")
            nyquist = 0.5 * sr
            # print(f"[DEBUG] Nyquist frequency={nyquist}")  
            if cutoff <= 0 or cutoff >= nyquist:
                print(f"[WARNING] Invalid cutoff frequency {cutoff}, adjusting...")
                cutoff = max(10, min(cutoff, nyquist - 1))  
            normal_cutoff = cutoff / nyquist
            # print(f"[DEBUG] Adjusted cutoff={cutoff}, normal_cutoff={normal_cutoff}")  
            b, a = signal.butter(order, normal_cutoff, btype='high', analog=False)
            y_filtered = signal.lfilter(b, a, y)
            return y_filtered
    
    def __getitem__(self, idx):
        audio_path = self.file_paths[idx]
        label = self.labels[idx]

        waveform, sr = torchaudio.load(audio_path)

        target_sr = self.processor.sampling_rate  

        if sr != target_sr:
            resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sr)
            waveform = resampler(waveform)

        waveform = waveform.mean(dim=0).squeeze(0)  # [Time]

        if label == 1:
            waveform = self.highpass_filter(waveform, self.sr)

        current_samples = waveform.shape[0]
        if current_samples > self.target_samples:
            waveform = waveform[:self.target_samples]  # Truncate
        elif current_samples < self.target_samples:
            pad_length = self.target_samples - current_samples
            waveform = torch.nn.functional.pad(waveform, (0, pad_length))  # Pad

        if isinstance(waveform, torch.Tensor):
            waveform = waveform.numpy()  # Tensor์ผ ๊ฒฝ์šฐ์—๋งŒ ๋ณ€ํ™˜

        inputs = self.processor(waveform, sampling_rate=target_sr, return_tensors="pt", padding=True)

        return inputs["input_values"].squeeze(0), torch.tensor(label, dtype=torch.long)  # [1, time] โ†’ [time]

    @staticmethod
    def collate_fn(batch, target_samples=16000 * 10):

        inputs, labels = zip(*batch)  # Unzip batch

        processed_inputs = []
        for waveform in inputs:
            current_samples = waveform.shape[0]

            if current_samples > target_samples:
                start_idx = (current_samples - target_samples) // 2
                cropped_waveform = waveform[start_idx:start_idx + target_samples]
            else:
                pad_length = target_samples - current_samples
                cropped_waveform = torch.nn.functional.pad(waveform, (0, pad_length))

            processed_inputs.append(cropped_waveform)

        processed_inputs = torch.stack(processed_inputs)  # [batch, target_samples]
        labels = torch.tensor(labels, dtype=torch.long)  # [batch]

        return processed_inputs, labels
    
    def preprocess_audio(audio_path, target_sr=16000, max_length=160000):
        """
        ์˜ค๋””์˜ค๋ฅผ ๋ชจ๋ธ ์ž…๋ ฅ์— ๋งž๊ฒŒ ๋ณ€ํ™˜
        - target_sr: 16kHz๋กœ ๋ณ€ํ™˜
        - max_length: ์ตœ๋Œ€ ๊ธธ์ด 160000 (10์ดˆ)
        """
        waveform, sr = torchaudio.load(audio_path)

        # Resample if needed
        if sr != target_sr:
            waveform = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sr)(waveform)

        # Convert to mono
        waveform = waveform.mean(dim=0).unsqueeze(0)  # (1, sequence_length)

        current_samples = waveform.shape[1]
        if current_samples > max_length:
            start_idx = (current_samples - max_length) // 2
            waveform = waveform[:, start_idx:start_idx + max_length]
        elif current_samples < max_length:
            pad_length = max_length - current_samples
            waveform = torch.nn.functional.pad(waveform, (0, pad_length))

        return waveform


DATASET_PATH = "/data/kym/AI_Music_Detection/audio/FakeMusicCaps"
SUNOCAPS_PATH = "/data/kym/Audio/SunoCaps"  # Open Set ํฌํ•จ ๋ฐ์ดํ„ฐ

# Closed Test: FakeMusicCaps ๋ฐ์ดํ„ฐ์…‹ ์‚ฌ์šฉ
real_files = glob.glob(os.path.join(DATASET_PATH, "real", "**", "*.wav"), recursive=True)
gen_files = glob.glob(os.path.join(DATASET_PATH, "generative", "**", "*.wav"), recursive=True)

# Open Set Test: SUNOCAPS_PATH ๋ฐ์ดํ„ฐ ํฌํ•จ
open_real_files = real_files + glob.glob(os.path.join(SUNOCAPS_PATH, "real", "**", "*.wav"), recursive=True)
open_gen_files = gen_files + glob.glob(os.path.join(SUNOCAPS_PATH, "generative", "**", "*.wav"), recursive=True)

real_labels = [0] * len(real_files)
gen_labels = [1] * len(gen_files)

open_real_labels = [0] * len(open_real_files)
open_gen_labels = [1] * len(open_gen_files)

# Closed Train, Val
real_train, real_val, real_train_labels, real_val_labels = train_test_split(real_files, real_labels, test_size=0.2, random_state=42)
gen_train, gen_val, gen_train_labels, gen_val_labels = train_test_split(gen_files, gen_labels, test_size=0.2, random_state=42)

train_files = real_train + gen_train
train_labels = real_train_labels + gen_train_labels
val_files = real_val + gen_val
val_labels = real_val_labels + gen_val_labels

# Closed Set Test์šฉ ๋ฐ์ดํ„ฐ์…‹
closed_test_files = real_files + gen_files
closed_test_labels = real_labels + gen_labels

# Open Set Test์šฉ ๋ฐ์ดํ„ฐ์…‹ 
open_test_files = open_real_files + open_gen_files
open_test_labels = open_real_labels + open_gen_labels

# Oversampling ์ ์šฉ
ros = RandomOverSampler(sampling_strategy='auto', random_state=42)
train_files_resampled, train_labels_resampled = ros.fit_resample(np.array(train_files).reshape(-1, 1), train_labels)

train_files = train_files_resampled.reshape(-1).tolist()
train_labels = train_labels_resampled

print(f"๐Ÿ“Œ Train Original FAKE: {len(gen_train)}")
print(f"๐Ÿ“Œ Train set (Oversampled) - REAL: {sum(1 for label in train_labels if label == 0)}, "
      f"FAKE: {sum(1 for label in train_labels if label == 1)}, Total: {len(train_files)}")
print(f"๐Ÿ“Œ Validation set - REAL: {len(real_val)}, FAKE: {len(gen_val)}, Total: {len(val_files)}")