Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,104 Bytes
c3c908f 8f94ca9 c3c908f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import os
import random
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
from torch.utils.data import DataLoader
from sklearn.metrics import f1_score, precision_score, recall_score, balanced_accuracy_score
import wandb
import argparse
from transformers import AutoModel, AutoConfig, Wav2Vec2FeatureExtractor
from ICASSP_2026.MERT.datalib import FakeMusicCapsDataset, train_files, train_labels, val_files, val_labels
from ICASSP_2026.MERT.networks import MERTFeatureExtractor
# Set device
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Seed for reproducibility
torch.manual_seed(42)
random.seed(42)
np.random.seed(42)
# Initialize wandb
wandb.init(project="mert", name=f"hpfilter_pretrain_{args.pretrain_epochs}_finetune_{args.finetune_epochs}", config=args)
# Load datasets
print("π Preparing datasets...")
train_dataset = FakeMusicCapsDataset(train_files, train_labels)
val_dataset = FakeMusicCapsDataset(val_files, val_labels)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=4, collate_fn=FakeMusicCapsDataset.collate_fn)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=4, collate_fn=FakeMusicCapsDataset.collate_fn)
# Model Checkpoint Paths
pretrain_ckpt = os.path.join(args.checkpoint_dir, f"mert_pretrain_{args.pretrain_epochs}.pth")
finetune_ckpt = os.path.join(args.checkpoint_dir, f"mert_finetune_{args.finetune_epochs}.pth")
# Load Music2Vec Model for Pretraining
print("π Initializing MERT model for Pretraining...")
config = AutoConfig.from_pretrained("m-a-p/MERT-v1-95M", trust_remote_code=True)
if not hasattr(config, "conv_pos_batch_norm"):
setattr(config, "conv_pos_batch_norm", False)
mert_model = AutoModel.from_pretrained("m-a-p/MERT-v1-95M", config=config, trust_remote_code=True).to(device)
mert_model = MERTFeatureExtractor().to(device)
# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(mert_model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.5)
# Training function
def train(model, dataloader, optimizer, criterion, device, epoch, phase="Pretrain"):
model.train()
total_loss, total_correct, total_samples = 0, 0, 0
all_preds, all_labels = [], []
for inputs, labels in tqdm(dataloader, desc=f"{phase} Training Epoch {epoch+1}"):
labels = labels.to(device)
inputs = inputs.to(device)
# inputs = inputs.float()
# output = model(inputs)
output = model(inputs)
# Check if the output is a tensor or an object with logits
if isinstance(output, torch.Tensor):
logits = output
elif hasattr(output, "logits"):
logits = output.logits
elif isinstance(output, (tuple, list)):
logits = output[0]
else:
raise ValueError("Unexpected model output type")
loss = criterion(logits, labels)
# loss = criterion(output, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
preds = output.argmax(dim=1)
total_correct += (preds == labels).sum().item()
total_samples += labels.size(0)
all_preds.extend(preds.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
scheduler.step()
accuracy = total_correct / total_samples
f1 = f1_score(all_labels, all_preds, average="binary")
precision = precision_score(all_labels, all_preds, average="binary")
recall = recall_score(all_labels, all_preds, average="binary", pos_label=1)
balanced_acc = balanced_accuracy_score(all_labels, all_preds)
wandb.log({
f"{phase} Train Loss": total_loss / len(dataloader),
f"{phase} Train Accuracy": accuracy,
f"{phase} Train F1 Score": f1,
f"{phase} Train Precision": precision,
f"{phase} Train Recall": recall,
f"{phase} Train Balanced Accuracy": balanced_acc,
})
print(f"{phase} Train Epoch {epoch+1}: Train Loss: {total_loss / len(dataloader):.4f}, "
f"Train Acc: {accuracy:.4f}, Train F1: {f1:.4f}, Train Prec: {precision:.4f}, Train Rec: {recall:.4f}, B_ACC: {balanced_acc:.4f}")
def validate(model, dataloader, optimizer, criterion, device, epoch, phase="Validation"):
model.eval()
total_loss, total_correct, total_samples = 0, 0, 0
all_preds, all_labels = [], []
for inputs, labels in tqdm(dataloader, desc=f"{phase} Validation Epoch {epoch+1}"):
labels = labels.to(device)
inputs = inputs.to(device)
output = model(inputs)
# Check if the output is a tensor or an object with logits
if isinstance(output, torch.Tensor):
logits = output
elif hasattr(output, "logits"):
logits = output.logits
elif isinstance(output, (tuple, list)):
logits = output[0]
else:
raise ValueError("Unexpected model output type")
loss = criterion(logits, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
preds = outputs.argmax(dim=1)
total_correct += (preds == labels).sum().item()
total_samples += labels.size(0)
all_preds.extend(preds.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
scheduler.step()
accuracy = total_correct / total_samples
val_f1 = f1_score(all_labels, all_preds, average="weighted")
val_precision = precision_score(all_labels, all_preds, average="binary")
val_recall = recall_score(all_labels, all_preds, average="binary")
val_bal_acc = balanced_accuracy_score(all_labels, all_preds)
wandb.log({
f"{phase} Val Loss": total_loss / len(dataloader),
f"{phase} Val Accuracy": accuracy,
f"{phase} Val F1 Score": val_f1,
f"{phase} Val Precision": val_precision,
f"{phase} Val Recall": val_recall,
f"{phase} Val Balanced Accuracy": val_bal_acc,
})
print(f"{phase} Val Loss: {total_loss / len(dataloader):.4f}, "
f"Val Acc: {accuracy:.4f}, Val F1: {val_f1:.4f}, Val Prec: {val_precision:.4f}, Val Rec: {val_recall:.4f}, Val B_ACC: {val_bal_acc:.4f}")
return total_loss / len(dataloader), accuracy, val_f1
print("\nπ Step 1: Self-Supervised Pretraining on REAL Data")
# for epoch in range(args.pretrain_epochs):
# train(mert_model, train_loader, optimizer, criterion, device, epoch, phase="Pretrain")
# torch.save(mert_model.state_dict(), pretrain_ckpt)
# print(f"\nPretraining completed! Model saved at: {pretrain_ckpt}")
# print("\nπ Initializing CCV Model for Fine-Tuning...")
# mert_model = AutoModel.from_pretrained("m-a-p/MERT-v1-95M", config=config, trust_remote_code=True).to(device)
# mert_model.feature_extractor.load_state_dict(torch.load(pretrain_ckpt), strict=False)
# optimizer = optim.Adam(mert_model.parameters(), lr=args.finetune_lr, weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.5)
print("\nπ Step 2: Fine-Tuning CCV Model")
for epoch in range(args.finetune_epochs):
train(mert_model, train_loader, optimizer, criterion, device, epoch, phase="Fine-Tune")
torch.save(mert_model.state_dict(), finetune_ckpt)
print(f"\nFine-Tuning completed! Model saved at: {finetune_ckpt}")
print("\nπ Step 2: Fine-Tuning MERT Model")
mert_model.load_state_dict(torch.load(pretrain_ckpt), strict=False)
optimizer = optim.Adam(mert_model.parameters(), lr=args.finetune_lr, weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.5)
for epoch in range(args.finetune_epochs):
train(mert_model, train_loader, optimizer, criterion, device, epoch, phase="Fine-Tune")
torch.save(mert_model.state_dict(), finetune_ckpt)
print(f"\nFine-Tuning completed! Model saved at: {finetune_ckpt}") |