File size: 8,104 Bytes
c3c908f
 
 
 
 
 
 
 
 
 
 
 
8f94ca9
 
c3c908f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import random
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
from torch.utils.data import DataLoader
from sklearn.metrics import f1_score, precision_score, recall_score, balanced_accuracy_score
import wandb
import argparse
from transformers import AutoModel, AutoConfig, Wav2Vec2FeatureExtractor
from ICASSP_2026.MERT.datalib import FakeMusicCapsDataset, train_files, train_labels, val_files, val_labels
from ICASSP_2026.MERT.networks import MERTFeatureExtractor
# Set device
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Seed for reproducibility
torch.manual_seed(42)
random.seed(42)
np.random.seed(42)

# Initialize wandb
wandb.init(project="mert", name=f"hpfilter_pretrain_{args.pretrain_epochs}_finetune_{args.finetune_epochs}", config=args)

# Load datasets
print("πŸ” Preparing datasets...")
train_dataset = FakeMusicCapsDataset(train_files, train_labels)
val_dataset = FakeMusicCapsDataset(val_files, val_labels)

train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=4, collate_fn=FakeMusicCapsDataset.collate_fn)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=4, collate_fn=FakeMusicCapsDataset.collate_fn)

# Model Checkpoint Paths
pretrain_ckpt = os.path.join(args.checkpoint_dir, f"mert_pretrain_{args.pretrain_epochs}.pth")
finetune_ckpt = os.path.join(args.checkpoint_dir, f"mert_finetune_{args.finetune_epochs}.pth")

# Load Music2Vec Model for Pretraining
print("πŸ” Initializing MERT model for Pretraining...")

config = AutoConfig.from_pretrained("m-a-p/MERT-v1-95M", trust_remote_code=True)
if not hasattr(config, "conv_pos_batch_norm"):
    setattr(config, "conv_pos_batch_norm", False)  

mert_model = AutoModel.from_pretrained("m-a-p/MERT-v1-95M", config=config, trust_remote_code=True).to(device)
mert_model = MERTFeatureExtractor().to(device)

# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(mert_model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.5)

# Training function
def train(model, dataloader, optimizer, criterion, device, epoch, phase="Pretrain"):
    model.train()
    total_loss, total_correct, total_samples = 0, 0, 0
    all_preds, all_labels = [], []

    for inputs, labels in tqdm(dataloader, desc=f"{phase} Training Epoch {epoch+1}"):
        labels = labels.to(device)
        inputs = inputs.to(device)

        # inputs = inputs.float()
        # output  = model(inputs)  
        output = model(inputs)

        # Check if the output is a tensor or an object with logits
        if isinstance(output, torch.Tensor):
            logits = output
        elif hasattr(output, "logits"):
            logits = output.logits
        elif isinstance(output, (tuple, list)):
            logits = output[0]
        else:
            raise ValueError("Unexpected model output type")

        loss = criterion(logits, labels)


        # loss = criterion(output, labels) 

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_loss += loss.item()
        preds = output.argmax(dim=1) 
        total_correct += (preds == labels).sum().item()
        total_samples += labels.size(0)
        all_preds.extend(preds.cpu().numpy())
        all_labels.extend(labels.cpu().numpy())

    scheduler.step()

    accuracy = total_correct / total_samples
    f1 = f1_score(all_labels, all_preds, average="binary")
    precision = precision_score(all_labels, all_preds, average="binary")
    recall = recall_score(all_labels, all_preds, average="binary", pos_label=1)
    balanced_acc = balanced_accuracy_score(all_labels, all_preds)


    wandb.log({
        f"{phase} Train Loss": total_loss / len(dataloader),
        f"{phase} Train Accuracy": accuracy,
        f"{phase} Train F1 Score": f1,
        f"{phase} Train Precision": precision,
        f"{phase} Train Recall": recall,
        f"{phase} Train Balanced Accuracy": balanced_acc,
    })

    print(f"{phase} Train Epoch {epoch+1}: Train Loss: {total_loss / len(dataloader):.4f}, "
          f"Train Acc: {accuracy:.4f}, Train F1: {f1:.4f}, Train Prec: {precision:.4f}, Train Rec: {recall:.4f}, B_ACC: {balanced_acc:.4f}")

def validate(model, dataloader, optimizer, criterion, device, epoch, phase="Validation"):
    model.eval()
    total_loss, total_correct, total_samples = 0, 0, 0
    all_preds, all_labels = [], []

    for inputs, labels in tqdm(dataloader, desc=f"{phase} Validation Epoch {epoch+1}"):
        labels = labels.to(device)
        inputs = inputs.to(device)

        output = model(inputs)

        # Check if the output is a tensor or an object with logits
        if isinstance(output, torch.Tensor):
            logits = output
        elif hasattr(output, "logits"):
            logits = output.logits
        elif isinstance(output, (tuple, list)):
            logits = output[0]
        else:
            raise ValueError("Unexpected model output type")

        loss = criterion(logits, labels)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_loss += loss.item()
        preds = outputs.argmax(dim=1) 
        total_correct += (preds == labels).sum().item()
        total_samples += labels.size(0)
        all_preds.extend(preds.cpu().numpy())
        all_labels.extend(labels.cpu().numpy())
    scheduler.step() 
    accuracy = total_correct / total_samples
    val_f1 = f1_score(all_labels, all_preds, average="weighted")
    val_precision = precision_score(all_labels, all_preds, average="binary")
    val_recall = recall_score(all_labels, all_preds, average="binary")
    val_bal_acc = balanced_accuracy_score(all_labels, all_preds)

    wandb.log({
        f"{phase} Val Loss": total_loss / len(dataloader),
        f"{phase} Val Accuracy": accuracy,
        f"{phase} Val F1 Score": val_f1,
        f"{phase} Val Precision": val_precision,
        f"{phase} Val Recall": val_recall,
        f"{phase} Val Balanced Accuracy": val_bal_acc,
    })
    print(f"{phase} Val Loss: {total_loss / len(dataloader):.4f}, "
          f"Val Acc: {accuracy:.4f}, Val F1: {val_f1:.4f}, Val Prec: {val_precision:.4f}, Val Rec: {val_recall:.4f}, Val B_ACC: {val_bal_acc:.4f}")
    return total_loss / len(dataloader), accuracy, val_f1


print("\nπŸ” Step 1: Self-Supervised Pretraining on REAL Data")
# for epoch in range(args.pretrain_epochs):
#     train(mert_model, train_loader, optimizer, criterion, device, epoch, phase="Pretrain")
# torch.save(mert_model.state_dict(), pretrain_ckpt)
# print(f"\nPretraining completed! Model saved at: {pretrain_ckpt}")

# print("\nπŸ” Initializing CCV Model for Fine-Tuning...")
# mert_model = AutoModel.from_pretrained("m-a-p/MERT-v1-95M", config=config, trust_remote_code=True).to(device)
# mert_model.feature_extractor.load_state_dict(torch.load(pretrain_ckpt), strict=False)

# optimizer = optim.Adam(mert_model.parameters(), lr=args.finetune_lr, weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.5)

print("\nπŸ” Step 2: Fine-Tuning CCV Model")
for epoch in range(args.finetune_epochs):
    train(mert_model, train_loader, optimizer, criterion, device, epoch, phase="Fine-Tune")

torch.save(mert_model.state_dict(), finetune_ckpt)
print(f"\nFine-Tuning completed! Model saved at: {finetune_ckpt}")

print("\nπŸ” Step 2: Fine-Tuning MERT Model")
mert_model.load_state_dict(torch.load(pretrain_ckpt), strict=False)

optimizer = optim.Adam(mert_model.parameters(), lr=args.finetune_lr, weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.5)

for epoch in range(args.finetune_epochs):
    train(mert_model, train_loader, optimizer, criterion, device, epoch, phase="Fine-Tune")

torch.save(mert_model.state_dict(), finetune_ckpt)
print(f"\nFine-Tuning completed! Model saved at: {finetune_ckpt}")