Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,780 Bytes
c3c908f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import os
import random
import numpy as np
import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
import wandb
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix, balanced_accuracy_score
from datalib import FakeMusicCapsDataset
from datalib import (
FakeMusicCapsDataset,
train_files, val_files, train_labels, val_labels,
closed_test_files, closed_test_labels,
open_test_files, open_test_labels,
preprocess_audio
)
from datalib import preprocess_audio
from networks import CCV
from attentionmap import visualize_attention_map
from confusion_matrix import plot_confusion_matrix
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
'''
python3 main.py --model_name CCV --batch_size 32 --epochs 10 --loss_type ce --oversample True
audiocnn encoder - crossattn based decoder (ViT) model
'''
# Argument parsing
import argparse
parser = argparse.ArgumentParser(description='AI Music Detection Training')
parser.add_argument('--gpu', type=str, default='1', help='GPU ID')
parser.add_argument('--model_name', type=str, choices=['audiocnn', 'CCV'], default='CCV', help='Model name')
parser.add_argument('--batch_size', type=int, default=32, help='Batch size')
parser.add_argument('--learning_rate', type=float, default=1e-4, help='Learning rate')
parser.add_argument('--epochs', type=int, default=10, help='Number of epochs')
parser.add_argument('--audio_duration', type=float, default=10, help='Length of the audio slice in seconds')
parser.add_argument('--patience_counter', type=int, default=5, help='Early stopping patience')
parser.add_argument('--log_dir', type=str, default='', help='TensorBoard log directory')
parser.add_argument('--ckpt_path', type=str, default='', help='Checkpoint directory')
parser.add_argument("--weight_decay", type=float, default=0.05, help="weight decay (default: 0.0)")
parser.add_argument("--loss_type", type=str, choices=["ce", "weighted_ce", "focal"], default="ce", help="Loss function type")
parser.add_argument('--inference', type=str, help='Path to a .wav file for inference')
parser.add_argument("--closed_test", action="store_true", help="Use Closed Test (FakeMusicCaps full dataset)")
parser.add_argument("--open_test", action="store_true", help="Use Open Set Test (SUNOCAPS_PATH included)")
parser.add_argument("--oversample", type=bool, default=True, help="Apply Oversampling to balance classes") # real data oversampling
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.manual_seed(42)
random.seed(42)
np.random.seed(42)
wandb.init(project="",
name=f"{args.model_name}_lr{args.learning_rate}_ep{args.epochs}_bs{args.batch_size}", config=args)
if args.model_name == 'CCV':
model = CCV(embed_dim=512, num_heads=8, num_layers=6, num_classes=2).cuda()
feat_type = 'mel'
else:
raise ValueError(f"Invalid model name: {args.model_name}")
model = model.to(device)
print(f"Using model: {args.model_name}, Parameters: {count_parameters(model)}")
print(f"weight_decay WD: {args.weight_decay}")
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.1)
if args.loss_type == "ce":
print("Using CrossEntropyLoss")
criterion = nn.CrossEntropyLoss()
elif args.loss_type == "weighted_ce":
print("Using Weighted CrossEntropyLoss")
num_real = sum(1 for label in train_labels if label == 0)
num_fake = sum(1 for label in train_labels if label == 1)
total_samples = num_real + num_fake
weight_real = total_samples / (2 * num_real)
weight_fake = total_samples / (2 * num_fake)
class_weights = torch.tensor([weight_real, weight_fake]).to(device)
criterion = nn.CrossEntropyLoss(weight=class_weights)
elif args.loss_type == "focal":
print("Using Focal Loss")
class FocalLoss(torch.nn.Module):
def __init__(self, alpha=0.25, gamma=2.0, reduction='mean'):
super(FocalLoss, self).__init__()
self.alpha = alpha
self.gamma = gamma
self.reduction = reduction
def forward(self, inputs, targets):
ce_loss = F.cross_entropy(inputs, targets, reduction='none')
pt = torch.exp(-ce_loss)
focal_loss = self.alpha * (1 - pt) ** self.gamma * ce_loss
if self.reduction == 'mean':
return focal_loss.mean()
elif self.reduction == 'sum':
return focal_loss.sum()
else:
return focal_loss
criterion = FocalLoss().to(device)
if not os.path.exists(args.ckpt_path):
os.makedirs(args.ckpt_path)
train_dataset = FakeMusicCapsDataset(train_files, train_labels, feat_type=feat_type, target_duration=args.audio_duration)
val_dataset = FakeMusicCapsDataset(val_files, val_labels, feat_type=feat_type, target_duration=args.audio_duration)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=16)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=16)
def train(model, train_loader, val_loader, optimizer, scheduler, criterion, device, args):
writer = SummaryWriter(log_dir=args.log_dir)
best_val_bal_acc = float('inf')
early_stop_cnt = 0
log_interval = 1
for epoch in range(args.epochs):
print(f"\n[Epoch {epoch + 1}/{args.epochs}]")
model.train()
train_loss, train_correct, train_total = 0, 0, 0
all_train_preds= []
all_train_labels = []
attention_maps = []
train_pbar = tqdm(train_loader, desc="Train", leave=False)
for batch_idx, (data, target) in enumerate(train_pbar):
data = data.to(device)
target = target.to(device)
output = model(data)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item() * data.size(0)
preds = output.argmax(dim=1)
train_correct += (preds == target).sum().item()
train_total += target.size(0)
all_train_labels.extend(target.cpu().numpy())
all_train_preds.extend(preds.cpu().numpy())
if hasattr(model, "get_attention_maps"):
attention_maps.append(model.get_attention_maps())
train_loss /= train_total
train_acc = train_correct / train_total
train_bal_acc = balanced_accuracy_score(all_train_labels, all_train_preds)
train_precision = precision_score(all_train_labels, all_train_preds, average="binary")
train_recall = recall_score(all_train_labels, all_train_preds, average="binary")
train_f1 = f1_score(all_train_labels, all_train_preds, average="binary")
wandb.log({
"Train Loss": train_loss, "Train Accuracy": train_acc,
"Train Precision": train_precision, "Train Recall": train_recall,
"Train F1 Score": train_f1, "Train B_ACC": train_bal_acc,
})
print(f"Train Epoch: {epoch+1} | Train Loss: {train_loss:.4f} | Train Acc: {train_acc:.3f} | "
f"Train B_ACC: {train_bal_acc:.4f} | Train Prec: {train_precision:.3f} | "
f"Train Rec: {train_recall:.3f} | Train F1: {train_f1:.3f}")
model.eval()
val_loss, val_correct, val_total = 0, 0, 0
all_val_preds, all_val_labels = [], []
attention_maps = []
val_pbar = tqdm(val_loader, desc=" Val ", leave=False)
with torch.no_grad():
for data, target in val_pbar:
data, target = data.to(device), target.to(device)
output = model(data)
loss = criterion(output, target)
val_loss += loss.item() * data.size(0)
preds = output.argmax(dim=1)
val_correct += (preds == target).sum().item()
val_total += target.size(0)
all_val_labels.extend(target.cpu().numpy())
all_val_preds.extend(preds.cpu().numpy())
if hasattr(model, "get_attention_maps"):
attention_maps.append(model.get_attention_maps())
val_loss /= val_total
val_acc = val_correct / val_total
val_bal_acc = balanced_accuracy_score(all_val_labels, all_val_preds)
val_precision = precision_score(all_val_labels, all_val_preds, average="binary")
val_recall = recall_score(all_val_labels, all_val_preds, average="binary")
val_f1 = f1_score(all_val_labels, all_val_preds, average="binary")
wandb.log({
"Validation Loss": val_loss, "Validation Accuracy": val_acc,
"Validation Precision": val_precision, "Validation Recall": val_recall,
"Validation F1 Score": val_f1, "Validation B_ACC": val_bal_acc,
})
print(f"Val Epoch: {epoch+1} [{batch_idx * len(data)}/{len(val_loader.dataset)} "
f"({100. * batch_idx / len(val_loader):.0f}%)]\t"
f"Val Loss: {val_loss:.4f} | Val Acc: {val_acc:.3f} | "
f"Val B_ACC: {val_bal_acc:.4f} | Val Prec: {val_precision:.3f} | "
f"Val Rec: {val_recall:.3f} | Val F1: {val_f1:.3f}")
if epoch % 1 == 0 and len(attention_maps) > 0:
print(f"Visualizing Attention Map at Epoch {epoch+1}")
if isinstance(attention_maps[0], list):
attn_map_numpy = np.array([t.detach().cpu().numpy() for t in attention_maps[0]])
elif isinstance(attention_maps[0], torch.Tensor):
attn_map_numpy = attention_maps[0].detach().cpu().numpy()
else:
attn_map_numpy = np.array(attention_maps[0])
print(f"Attention Map Shape: {attn_map_numpy.shape}")
if len(attn_map_numpy) > 0:
fig, ax = plt.subplots(figsize=(10, 8))
ax.imshow(attn_map_numpy[0], cmap='viridis', interpolation='nearest')
ax.set_title(f"Attention Map - Epoch {epoch+1}")
plt.colorbar(ax.imshow(attn_map_numpy[0], cmap='viridis'))
plt.savefig("")
plt.show()
else:
print(f"Warning: attention_maps[0] is empty! Shape={attn_map_numpy.shape}")
if val_bal_acc < best_val_bal_acc:
best_val_bal_acc = val_bal_acc
early_stop_cnt = 0
torch.save(model.state_dict(), os.path.join(args.ckpt_path, f"best_model_{args.model_name}.pth"))
print("Best model saved.")
else:
early_stop_cnt += 1
print(f'PATIENCE {early_stop_cnt}/{args.patience_counter}')
if early_stop_cnt >= args.patience_counter:
print("Early stopping triggered.")
break
scheduler.step()
plot_confusion_matrix(all_val_labels, all_val_preds, classes=["REAL", "FAKE"], writer=writer, epoch=epoch)
wandb.finish()
writer.close()
def predict(audio_path):
print(f"Loading model from {args.ckpt_path}/celoss_best_model_{args.model_name}.pth")
model.load_state_dict(torch.load(os.path.join(args.ckpt_path, f"best_model_{args.model_name}.pth"), map_location=device))
model.eval()
input_tensor = preprocess_audio(audio_path).to(device)
with torch.no_grad():
output = model(input_tensor)
probabilities = F.softmax(output, dim=1)
ai_music_prob = probabilities[0, 1].item()
if ai_music_prob > 0.5:
print(f"FAKE MUSIC {ai_music_prob:.2%})")
else:
print(f"REAL MUSIC {100 - ai_music_prob * 100:.2f}%")
def Test(model, test_loader, criterion, device):
model.load_state_dict(torch.load(os.path.join(args.ckpt_path, f"best_model_{args.model_name}.pth"), map_location=device))
model.eval()
test_loss, test_correct, test_total = 0, 0, 0
all_preds, all_labels = [], []
with torch.no_grad():
for data, target in tqdm(test_loader, desc=" Test ", leave=False):
data, target = data.to(device), target.to(device)
output = model(data)
loss = criterion(output, target)
test_loss += loss.item() * data.size(0)
preds = output.argmax(dim=1)
test_correct += (preds == target).sum().item()
test_total += target.size(0)
all_labels.extend(target.cpu().numpy())
all_preds.extend(preds.cpu().numpy())
test_loss /= test_total
test_acc = test_correct / test_total
test_bal_acc = balanced_accuracy_score(all_labels, all_preds)
test_precision = precision_score(all_labels, all_preds, average="binary")
test_recall = recall_score(all_labels, all_preds, average="binary")
test_f1 = f1_score(all_labels, all_preds, average="binary")
print(f"\nTest Results - Loss: {test_loss:.4f} | Test Acc: {test_acc:.3f} | "
f"Test B_ACC: {test_bal_acc:.4f} | Test Prec: {test_precision:.3f} | "
f"Test Rec: {test_recall:.3f} | Test F1: {test_f1:.3f}")
if __name__ == "__main__":
train(model, train_loader, val_loader, optimizer, scheduler, criterion, device, args)
if args.closed_test:
print("\nRunning Closed Test (FakeMusicCaps Full Dataset)...")
test_dataset = FakeMusicCapsDataset(closed_test_files, closed_test_labels, feat_type=feat_type, target_duration=args.audio_duration)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=16)
elif args.open_test:
print("\nRunning Open Set Test (FakeMusicCaps + SunoCaps)...")
test_dataset = FakeMusicCapsDataset(open_test_files, open_test_labels, feat_type=feat_type, target_duration=args.audio_duration)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=16)
else:
print("\nRunning Validation Test (FakeMusicCaps 20% Validation Set)...")
test_dataset = FakeMusicCapsDataset(val_files, val_labels, feat_type=feat_type, target_duration=args.audio_duration)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=16)
print("\nEvaluating Model on Test Set...")
Test(model, test_loader, criterion, device)
if args.inference:
if not os.path.exists(args.inference):
print(f"[ERROR] No File Found: {args.inference}")
else:
predict(args.inference)
|