File size: 14,780 Bytes
c3c908f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import os
import random
import numpy as np
import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
import wandb
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix, balanced_accuracy_score
from datalib import FakeMusicCapsDataset
from datalib import (
    FakeMusicCapsDataset,
    train_files, val_files, train_labels, val_labels,  
    closed_test_files, closed_test_labels, 
    open_test_files, open_test_labels,  
    preprocess_audio 
)
from datalib import preprocess_audio 
from networks import CCV
from attentionmap import visualize_attention_map 
from confusion_matrix import plot_confusion_matrix

def count_parameters(model):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)
'''
python3 main.py --model_name CCV --batch_size 32 --epochs 10 --loss_type ce --oversample True

audiocnn encoder - crossattn based decoder (ViT) model
'''
# Argument parsing
import argparse
parser = argparse.ArgumentParser(description='AI Music Detection Training')
parser.add_argument('--gpu', type=str, default='1', help='GPU ID')
parser.add_argument('--model_name', type=str, choices=['audiocnn', 'CCV'], default='CCV', help='Model name')
parser.add_argument('--batch_size', type=int, default=32, help='Batch size')
parser.add_argument('--learning_rate', type=float, default=1e-4, help='Learning rate')
parser.add_argument('--epochs', type=int, default=10, help='Number of epochs')
parser.add_argument('--audio_duration', type=float, default=10, help='Length of the audio slice in seconds')
parser.add_argument('--patience_counter', type=int, default=5, help='Early stopping patience')
parser.add_argument('--log_dir', type=str, default='', help='TensorBoard log directory')
parser.add_argument('--ckpt_path', type=str, default='', help='Checkpoint directory')
parser.add_argument("--weight_decay", type=float, default=0.05, help="weight decay (default: 0.0)")
parser.add_argument("--loss_type", type=str, choices=["ce", "weighted_ce", "focal"], default="ce", help="Loss function type")

parser.add_argument('--inference', type=str, help='Path to a .wav file for inference')  
parser.add_argument("--closed_test", action="store_true", help="Use Closed Test (FakeMusicCaps full dataset)")
parser.add_argument("--open_test", action="store_true", help="Use Open Set Test (SUNOCAPS_PATH included)")
parser.add_argument("--oversample", type=bool, default=True, help="Apply Oversampling to balance classes") # real data oversampling


args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

torch.manual_seed(42)
random.seed(42)
np.random.seed(42)
wandb.init(project="", 
           name=f"{args.model_name}_lr{args.learning_rate}_ep{args.epochs}_bs{args.batch_size}", config=args)

if args.model_name == 'CCV':
    model = CCV(embed_dim=512, num_heads=8, num_layers=6, num_classes=2).cuda()
    feat_type = 'mel'
else:
    raise ValueError(f"Invalid model name: {args.model_name}")

model = model.to(device)
print(f"Using model: {args.model_name}, Parameters: {count_parameters(model)}")
print(f"weight_decay WD: {args.weight_decay}")

optimizer = optim.Adam(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.1)

if args.loss_type == "ce":
    print("Using CrossEntropyLoss")
    criterion = nn.CrossEntropyLoss()

elif args.loss_type == "weighted_ce":
    print("Using Weighted CrossEntropyLoss")
    
    num_real = sum(1 for label in train_labels if label == 0) 
    num_fake = sum(1 for label in train_labels if label == 1)  

    total_samples = num_real + num_fake
    weight_real = total_samples / (2 * num_real)  
    weight_fake = total_samples / (2 * num_fake)  
    class_weights = torch.tensor([weight_real, weight_fake]).to(device)

    criterion = nn.CrossEntropyLoss(weight=class_weights)

elif args.loss_type == "focal":
    print("Using Focal Loss")

    class FocalLoss(torch.nn.Module):
        def __init__(self, alpha=0.25, gamma=2.0, reduction='mean'):
            super(FocalLoss, self).__init__()
            self.alpha = alpha
            self.gamma = gamma
            self.reduction = reduction

        def forward(self, inputs, targets):
            ce_loss = F.cross_entropy(inputs, targets, reduction='none')
            pt = torch.exp(-ce_loss)  
            focal_loss = self.alpha * (1 - pt) ** self.gamma * ce_loss  

            if self.reduction == 'mean':
                return focal_loss.mean()
            elif self.reduction == 'sum':
                return focal_loss.sum()
            else:
                return focal_loss

    criterion = FocalLoss().to(device)

if not os.path.exists(args.ckpt_path):
    os.makedirs(args.ckpt_path)

train_dataset = FakeMusicCapsDataset(train_files, train_labels, feat_type=feat_type, target_duration=args.audio_duration)
val_dataset = FakeMusicCapsDataset(val_files, val_labels, feat_type=feat_type, target_duration=args.audio_duration)

train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=16)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=16)

def train(model, train_loader, val_loader, optimizer, scheduler, criterion, device, args):
    writer = SummaryWriter(log_dir=args.log_dir)
    best_val_bal_acc = float('inf')
    early_stop_cnt = 0  
    log_interval = 1

    for epoch in range(args.epochs):
        print(f"\n[Epoch {epoch + 1}/{args.epochs}]")
        model.train()
        train_loss, train_correct, train_total = 0, 0, 0

        all_train_preds= [] 
        all_train_labels = []
        attention_maps = []  

        train_pbar = tqdm(train_loader, desc="Train", leave=False)
        for batch_idx, (data, target) in enumerate(train_pbar):
            data = data.to(device)
            target = target.to(device)
            output = model(data)
            loss = criterion(output, target)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            train_loss += loss.item() * data.size(0)  
            preds = output.argmax(dim=1) 
            train_correct += (preds == target).sum().item()
            train_total += target.size(0)

            all_train_labels.extend(target.cpu().numpy())
            all_train_preds.extend(preds.cpu().numpy())

            if hasattr(model, "get_attention_maps"):  
                attention_maps.append(model.get_attention_maps())

        train_loss /= train_total
        train_acc = train_correct / train_total
        train_bal_acc = balanced_accuracy_score(all_train_labels, all_train_preds)
        train_precision = precision_score(all_train_labels, all_train_preds, average="binary")
        train_recall = recall_score(all_train_labels, all_train_preds, average="binary")
        train_f1 = f1_score(all_train_labels, all_train_preds, average="binary")

        wandb.log({
            "Train Loss": train_loss, "Train Accuracy": train_acc,
            "Train Precision": train_precision, "Train Recall": train_recall,
            "Train F1 Score": train_f1, "Train B_ACC": train_bal_acc,
        })

        print(f"Train Epoch: {epoch+1} | Train Loss: {train_loss:.4f} | Train Acc: {train_acc:.3f} | "
              f"Train B_ACC: {train_bal_acc:.4f} | Train Prec: {train_precision:.3f} | "
              f"Train Rec: {train_recall:.3f} | Train F1: {train_f1:.3f}")

        model.eval()
        val_loss, val_correct, val_total = 0, 0, 0
        all_val_preds, all_val_labels = [], []
        attention_maps = []  
        val_pbar = tqdm(val_loader, desc=" Val ", leave=False)
        with torch.no_grad():
            for data, target in val_pbar:
                data, target = data.to(device), target.to(device)
                output = model(data)
                loss = criterion(output, target)
                val_loss += loss.item() * data.size(0)
                preds = output.argmax(dim=1)  
                val_correct += (preds == target).sum().item()
                val_total += target.size(0)

                all_val_labels.extend(target.cpu().numpy())
                all_val_preds.extend(preds.cpu().numpy())

                if hasattr(model, "get_attention_maps"):  
                    attention_maps.append(model.get_attention_maps())

        val_loss /= val_total
        val_acc = val_correct / val_total
        val_bal_acc = balanced_accuracy_score(all_val_labels, all_val_preds)
        val_precision = precision_score(all_val_labels, all_val_preds, average="binary")
        val_recall = recall_score(all_val_labels, all_val_preds, average="binary")
        val_f1 = f1_score(all_val_labels, all_val_preds, average="binary")

        wandb.log({
            "Validation Loss": val_loss, "Validation Accuracy": val_acc,
            "Validation Precision": val_precision, "Validation Recall": val_recall,
            "Validation F1 Score": val_f1, "Validation B_ACC": val_bal_acc,
        })

        print(f"Val Epoch: {epoch+1} [{batch_idx * len(data)}/{len(val_loader.dataset)} "
            f"({100. * batch_idx / len(val_loader):.0f}%)]\t"
            f"Val  Loss: {val_loss:.4f} | Val Acc: {val_acc:.3f} | "
            f"Val B_ACC: {val_bal_acc:.4f} | Val Prec: {val_precision:.3f} | "
            f"Val Rec: {val_recall:.3f} | Val F1: {val_f1:.3f}")
        
        if epoch % 1 == 0 and len(attention_maps) > 0:
            print(f"Visualizing Attention Map at Epoch {epoch+1}")

            if isinstance(attention_maps[0], list):
                attn_map_numpy = np.array([t.detach().cpu().numpy() for t in attention_maps[0]])  
            elif isinstance(attention_maps[0], torch.Tensor):
                attn_map_numpy = attention_maps[0].detach().cpu().numpy()
            else:
                attn_map_numpy = np.array(attention_maps[0]) 

            print(f"Attention Map Shape: {attn_map_numpy.shape}")

            if len(attn_map_numpy) > 0:
                fig, ax = plt.subplots(figsize=(10, 8))
                ax.imshow(attn_map_numpy[0], cmap='viridis', interpolation='nearest')
                ax.set_title(f"Attention Map - Epoch {epoch+1}")
                plt.colorbar(ax.imshow(attn_map_numpy[0], cmap='viridis'))
                plt.savefig("")
                plt.show()
            else:
                print(f"Warning: attention_maps[0] is empty! Shape={attn_map_numpy.shape}")

        if val_bal_acc < best_val_bal_acc:
            best_val_bal_acc = val_bal_acc
            early_stop_cnt = 0  
            torch.save(model.state_dict(), os.path.join(args.ckpt_path, f"best_model_{args.model_name}.pth"))
            print("Best model saved.")
        else:
            early_stop_cnt += 1  
            print(f'PATIENCE {early_stop_cnt}/{args.patience_counter}')

        if early_stop_cnt >= args.patience_counter:
            print("Early stopping triggered.")
            break

        scheduler.step()
        plot_confusion_matrix(all_val_labels, all_val_preds, classes=["REAL", "FAKE"], writer=writer, epoch=epoch)

    wandb.finish()
    writer.close()

def predict(audio_path):
    print(f"Loading model from {args.ckpt_path}/celoss_best_model_{args.model_name}.pth")
    model.load_state_dict(torch.load(os.path.join(args.ckpt_path, f"best_model_{args.model_name}.pth"), map_location=device))
    model.eval()

    input_tensor = preprocess_audio(audio_path).to(device)

    with torch.no_grad():
        output = model(input_tensor)
        probabilities = F.softmax(output, dim=1)
        ai_music_prob = probabilities[0, 1].item()

    if ai_music_prob > 0.5:
        print(f"FAKE MUSIC {ai_music_prob:.2%})")
    else:
        print(f"REAL MUSIC {100 - ai_music_prob * 100:.2f}%")

def Test(model, test_loader, criterion, device):
    model.load_state_dict(torch.load(os.path.join(args.ckpt_path, f"best_model_{args.model_name}.pth"), map_location=device))
    model.eval()
    test_loss, test_correct, test_total = 0, 0, 0
    all_preds, all_labels = [], []

    with torch.no_grad():
        for data, target in tqdm(test_loader, desc=" Test ", leave=False):
            data, target = data.to(device), target.to(device)
            output = model(data)
            loss = criterion(output, target)

            test_loss += loss.item() * data.size(0)
            preds = output.argmax(dim=1)
            test_correct += (preds == target).sum().item()
            test_total += target.size(0)

            all_labels.extend(target.cpu().numpy())
            all_preds.extend(preds.cpu().numpy())

    test_loss /= test_total
    test_acc = test_correct / test_total
    test_bal_acc = balanced_accuracy_score(all_labels, all_preds)
    test_precision = precision_score(all_labels, all_preds, average="binary")
    test_recall = recall_score(all_labels, all_preds, average="binary")
    test_f1 = f1_score(all_labels, all_preds, average="binary")

    print(f"\nTest Results - Loss: {test_loss:.4f} | Test Acc: {test_acc:.3f} | "
          f"Test B_ACC: {test_bal_acc:.4f} | Test Prec: {test_precision:.3f} | "
          f"Test Rec: {test_recall:.3f} | Test F1: {test_f1:.3f}")


if __name__ == "__main__":
    train(model, train_loader, val_loader, optimizer, scheduler, criterion, device, args)
    if args.closed_test:
        print("\nRunning Closed Test (FakeMusicCaps Full Dataset)...")
        test_dataset = FakeMusicCapsDataset(closed_test_files, closed_test_labels, feat_type=feat_type, target_duration=args.audio_duration)
        test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=16)

    elif args.open_test:
        print("\nRunning Open Set Test (FakeMusicCaps + SunoCaps)...")
        test_dataset = FakeMusicCapsDataset(open_test_files, open_test_labels, feat_type=feat_type, target_duration=args.audio_duration)
        test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=16)

    else:
        print("\nRunning Validation Test (FakeMusicCaps 20% Validation Set)...")
        test_dataset = FakeMusicCapsDataset(val_files, val_labels, feat_type=feat_type, target_duration=args.audio_duration)
        test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=16)

    print("\nEvaluating Model on Test Set...")
    Test(model, test_loader, criterion, device)

    if args.inference:
        if not os.path.exists(args.inference):
            print(f"[ERROR] No File Found: {args.inference}")
        else:
            predict(args.inference)