Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,457 Bytes
c3c908f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import os
import torch
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from sklearn.metrics import precision_score, recall_score, f1_score, balanced_accuracy_score, confusion_matrix
from datalib_f import (
FakeMusicCapsDataset,
closed_test_files, closed_test_labels,
open_test_files, open_test_labels,
val_files, val_labels
)
from networks_f import CCV_Wav2Vec2
import argparse
parser = argparse.ArgumentParser(description="AI Music Detection Testing")
parser.add_argument('--gpu', type=str, default='1', help='GPU ID')
parser.add_argument('--model_name', type=str, choices=['audiocnn', 'CCV'], default='CCV_Wav2Vec2', help='Model name')
parser.add_argument('--batch_size', type=int, default=32, help='Batch size')
parser.add_argument('--ckpt_path', type=str, default='/data/kym/AI_Music_Detection/Code/model/tensorboard/wav2vec', help='Checkpoint directory')
parser.add_argument('--closed_test', action="store_true", help="Use Closed Test (FakeMusicCaps full dataset)")
parser.add_argument('--open_test', action="store_true", help="Use Open Set Test (SUNOCAPS_PATH included)")
parser.add_argument('--output_path', type=str, default='/data/kym/AI_Music_Detection/Code/model/test_results/w_celoss_repreprocess/wav2vec', help='Path to save test results')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def plot_confusion_matrix(y_true, y_pred, classes, output_path):
cm = confusion_matrix(y_true, y_pred)
fig, ax = plt.subplots(figsize=(6, 6))
im = ax.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
ax.figure.colorbar(im, ax=ax)
num_classes = cm.shape[0]
tick_labels = classes[:num_classes]
ax.set(xticks=np.arange(num_classes),
yticks=np.arange(num_classes),
xticklabels=tick_labels,
yticklabels=tick_labels,
ylabel='True label',
xlabel='Predicted label')
thresh = cm.max() / 2.
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], 'd'),
ha="center", va="center",
color="white" if cm[i, j] > thresh else "black")
fig.tight_layout()
plt.savefig(output_path)
plt.close(fig)
if args.model_name == 'CCV_Wav2Vec2':
model = CCV_Wav2Vec2(embed_dim=512, num_heads=8, num_layers=6, num_classes=2).to(device)
else:
raise ValueError(f"Invalid model name: {args.model_name}")
ckpt_file = os.path.join(args.ckpt_path, f"best_model_{args.model_name}.pth")
if not os.path.exists(ckpt_file):
raise FileNotFoundError(f"Checkpoint not found: {ckpt_file}")
print(f"\nLoading model from {ckpt_file}")
# model.load_state_dict(torch.load(ckpt_file, map_location=device))
# 병렬
state_dict = torch.load(ckpt_file, map_location=device)
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] if k.startswith("module.") else k
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
# 병렬
model.eval()
torch.cuda.empty_cache()
if args.closed_test:
print("\nRunning Closed Test (FakeMusicCaps Full Dataset)...")
test_dataset = FakeMusicCapsDataset(closed_test_files, closed_test_labels, feat_type="mel", target_duration=10.0)
elif args.open_test:
print("\nRunning Open Set Test (FakeMusicCaps + SunoCaps)...")
test_dataset = FakeMusicCapsDataset(open_test_files, open_test_labels, feat_type="mel", target_duration=10.0)
else:
print("\nRunning Validation Test (FakeMusicCaps 20% Validation Set)...")
test_dataset = FakeMusicCapsDataset(val_files, val_labels, feat_type="mel", target_duration=10.0)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=16)
def Test(model, test_loader, device):
model.eval()
test_loss, test_correct, test_total = 0, 0, 0
all_preds, all_labels = [], []
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
loss = F.cross_entropy(output, target)
test_loss += loss.item() * data.size(0)
preds = output.argmax(dim=1)
test_correct += (preds == target).sum().item()
test_total += target.size(0)
all_labels.extend(target.cpu().numpy())
all_preds.extend(preds.cpu().numpy())
test_loss /= test_total
test_acc = test_correct / test_total
test_bal_acc = balanced_accuracy_score(all_labels, all_preds)
test_precision = precision_score(all_labels, all_preds, average="binary")
test_recall = recall_score(all_labels, all_preds, average="binary")
test_f1 = f1_score(all_labels, all_preds, average="binary")
print(f"\nTest Results - Loss: {test_loss:.4f} | Test Acc: {test_acc:.3f} | "
f"Test B_ACC: {test_bal_acc:.4f} | Test Prec: {test_precision:.3f} | "
f"Test Rec: {test_recall:.3f} | Test F1: {test_f1:.3f}")
os.makedirs(args.output_path, exist_ok=True)
conf_matrix_path = os.path.join(args.output_path, f"confusion_matrix_{args.model_name}.png")
plot_confusion_matrix(all_labels, all_preds, classes=["real", "generative"], output_path=conf_matrix_path)
print("\nEvaluating Model on Test Set...")
Test(model, test_loader, device)
|