File size: 6,058 Bytes
c3c908f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import glob
import torch
import torchaudio
import librosa
import numpy as np
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset
from imblearn.over_sampling import RandomOverSampler
from transformers import Wav2Vec2Processor
import torch
import torchaudio
from torch.nn.utils.rnn import pad_sequence
import scipy.signal as signal
import random

class FakeMusicCapsDataset(Dataset):
    def __init__(self, file_paths, labels, sr=16000, target_duration=10.0, augment=True):
        self.file_paths = file_paths
        self.labels = labels
        self.sr = sr
        self.target_samples = int(target_duration * sr) 
        self.augment = augment
    def __len__(self):
        return len(self.file_paths)

    def augment_audio(self, y, sr):
        if isinstance(y, torch.Tensor):
            y = y.numpy() 
        if random.random() < 0.5:
            rate = random.uniform(0.8, 1.2)
            y = librosa.effects.time_stretch(y=y, rate=rate)
        if random.random() < 0.5:
            n_steps = random.randint(-2, 2)
            y = librosa.effects.pitch_shift(y=y, sr=sr, n_steps=n_steps) 
        if random.random() < 0.5:
            noise_level = np.random.uniform(0.001, 0.005)
            y = y + np.random.normal(0, noise_level, y.shape)
        if random.random() < 0.5:
            gain = np.random.uniform(0.9, 1.1)
            y = y * gain
        return torch.tensor(y, dtype=torch.float32)  

    
    def __getitem__(self, idx):
        audio_path = self.file_paths[idx]
        label = self.labels[idx]

        waveform, sr = torchaudio.load(audio_path)
        waveform = torchaudio.transforms.Resample(orig_freq=sr, new_freq=self.sr)(waveform)
        waveform = waveform.mean(dim=0)  
        current_samples = waveform.shape[0]

        if label == 0:
            waveform = self.augment_audio(waveform, self.sr)
        if label == 1:
            waveform = self.highpass_filter(waveform, self.sr)
            waveform = self.augment_audio(waveform, self.sr)

        if current_samples > self.target_samples:
            waveform = waveform[:self.target_samples] 
        elif current_samples < self.target_samples:
            pad_length = self.target_samples - current_samples
            waveform = torch.nn.functional.pad(waveform, (0, pad_length))  

        # waveform = waveform.squeeze(0)
        if isinstance(waveform, np.ndarray):
            waveform = torch.tensor(waveform, dtype=torch.float32)

        return waveform.unsqueeze(0), torch.tensor(label, dtype=torch.long)  

    def highpass_filter(self, y, sr, cutoff=500, order=5): 
            if isinstance(sr, np.ndarray):
                sr = np.mean(sr)  
            if not isinstance(sr, (int, float)):
                raise ValueError(f"[ERROR] sr must be a number, but got {type(sr)}: {sr}")
            if sr <= 0:
                raise ValueError(f"Invalid sample rate: {sr}. It must be greater than 0.")
            nyquist = 0.5 * sr
            if cutoff <= 0 or cutoff >= nyquist:
                print(f"[WARNING] Invalid cutoff frequency {cutoff}, adjusting...")
                cutoff = max(10, min(cutoff, nyquist - 1))  
            normal_cutoff = cutoff / nyquist
            b, a = signal.butter(order, normal_cutoff, btype='high', analog=False)
            y_filtered = signal.lfilter(b, a, y)
            return y_filtered

    def preprocess_audio(audio_path, target_sr=16000, max_length=160000):
        waveform, sr = torchaudio.load(audio_path)
        if sr != target_sr:
            waveform = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sr)(waveform)

        waveform = waveform.mean(dim=0).unsqueeze(0)  

        current_samples = waveform.shape[1]
        if current_samples > max_length:
            start_idx = (current_samples - max_length) // 2
            waveform = waveform[:, start_idx:start_idx + max_length]
        elif current_samples < max_length:
            pad_length = max_length - current_samples
            waveform = torch.nn.functional.pad(waveform, (0, pad_length))

        return waveform


DATASET_PATH = "/data/kym/AI_Music_Detection/audio/FakeMusicCaps"
SUNOCAPS_PATH = "/data/kym/Audio/SunoCaps"  # Open Set 포함 데이터

real_files = glob.glob(os.path.join(DATASET_PATH, "real", "**", "*.wav"), recursive=True)
gen_files = glob.glob(os.path.join(DATASET_PATH, "generative", "**", "*.wav"), recursive=True)

open_real_files = real_files + glob.glob(os.path.join(SUNOCAPS_PATH, "real", "**", "*.wav"), recursive=True)
open_gen_files = gen_files + glob.glob(os.path.join(SUNOCAPS_PATH, "generative", "**", "*.wav"), recursive=True)

real_labels = [0] * len(real_files)
gen_labels = [1] * len(gen_files)

open_real_labels = [0] * len(open_real_files)
open_gen_labels = [1] * len(open_gen_files)

real_train, real_val, real_train_labels, real_val_labels = train_test_split(real_files, real_labels, test_size=0.2, random_state=42)
gen_train, gen_val, gen_train_labels, gen_val_labels = train_test_split(gen_files, gen_labels, test_size=0.2, random_state=42)

train_files = real_train + gen_train
train_labels = real_train_labels + gen_train_labels
val_files = real_val + gen_val
val_labels = real_val_labels + gen_val_labels

closed_test_files = real_files + gen_files
closed_test_labels = real_labels + gen_labels

open_test_files = open_real_files + open_gen_files
open_test_labels = open_real_labels + open_gen_labels

ros = RandomOverSampler(sampling_strategy='auto', random_state=42)
train_files_resampled, train_labels_resampled = ros.fit_resample(np.array(train_files).reshape(-1, 1), train_labels)

train_files = train_files_resampled.reshape(-1).tolist()
train_labels = train_labels_resampled

print(f"Train Original FAKE: {len(gen_train)}")
print(f"Train set (Oversampled) - REAL: {sum(1 for label in train_labels if label == 0)}, "
      f"FAKE: {sum(1 for label in train_labels if label == 1)}, Total: {len(train_files)}")
print(f"Validation set - REAL: {len(real_val)}, FAKE: {len(gen_val)}, Total: {len(val_files)}")