File size: 7,021 Bytes
c3c908f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
import random
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
from torch.utils.data import DataLoader
from sklearn.metrics import f1_score, precision_score, recall_score, balanced_accuracy_score
import wandb
import argparse
from transformers import Wav2Vec2Processor
from datalib import FakeMusicCapsDataset, train_files, train_labels, val_files, val_labels
from networks import Music2VecClassifier, CCV

parser = argparse.ArgumentParser(description='AI Music Detection Training with Music2Vec + CCV')
parser.add_argument('--gpu', type=str, default='2', help='GPU ID')
parser.add_argument('--batch_size', type=int, default=32, help='Batch size')
parser.add_argument('--learning_rate', type=float, default=1e-4, help='Learning rate')
parser.add_argument('--finetune_lr', type=float, default=1e-3, help='Fine-Tune Learning rate')
parser.add_argument('--pretrain_epochs', type=int, default=20, help='Pretraining epochs (REAL data only)')
parser.add_argument('--finetune_epochs', type=int, default=10, help='Fine-tuning epochs (REAL + FAKE data)')
parser.add_argument('--checkpoint_dir', type=str, default='', help='Checkpoint directory')
parser.add_argument('--weight_decay', type=float, default=0.001, help="Weight decay for optimizer")

args = parser.parse_args()

os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

torch.manual_seed(42)
random.seed(42)
np.random.seed(42)

wandb.init(project="music2vec_ccv", name=f"pretrain_{args.pretrain_epochs}_finetune_{args.finetune_epochs}", config=args)

print("Preparing datasets...")
train_dataset = FakeMusicCapsDataset(train_files, train_labels)
val_dataset = FakeMusicCapsDataset(val_files, val_labels)

train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=4)

pretrain_ckpt = os.path.join(args.checkpoint_dir, f"music2vec_pretrain_{args.pretrain_epochs}.pth")
finetune_ckpt = os.path.join(args.checkpoint_dir, f"music2vec_ccv_finetune_{args.finetune_epochs}.pth")

print("Initializing Music2Vec model for Pretraining...")
processor = Wav2Vec2Processor.from_pretrained("facebook/data2vec-audio-base-960h") 
model = Music2VecClassifier(freeze_feature_extractor=False).to(device)  # Pretraining에서는 freeze

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.5)

def train(model, dataloader, optimizer, criterion, device, epoch, phase="Pretrain"):
    model.train()
    total_loss, total_correct, total_samples = 0, 0, 0
    all_preds, all_labels = [], []

    for inputs, labels in tqdm(dataloader, desc=f"{phase} Training Epoch {epoch+1}"):
        labels = labels.to(device)
        inputs = inputs.to(device)

        logits = model(inputs)
        loss = criterion(logits, labels)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_loss += loss.item()
        preds = logits.argmax(dim=1)
        total_correct += (preds == labels).sum().item()
        total_samples += labels.size(0)
        all_preds.extend(preds.cpu().numpy())
        all_labels.extend(labels.cpu().numpy())

    scheduler.step()
    accuracy = total_correct / total_samples
    f1 = f1_score(all_labels, all_preds, average="binary")
    balanced_acc = balanced_accuracy_score(all_labels, all_preds)
    precision = precision_score(all_labels, all_preds, average="binary")
    recall = recall_score(all_labels, all_preds, average="binary")

    wandb.log({
        f"{phase} Train Loss": total_loss / len(dataloader),
        f"{phase} Train Accuracy": accuracy,
        f"{phase} Train F1 Score": f1,
        f"{phase} Train Precision": precision,
        f"{phase} Train Recall": recall,
        f"{phase} Train Balanced Accuracy": balanced_acc,
    })

    print(f"{phase} Train Epoch {epoch+1}: Train Loss: {total_loss / len(dataloader):.4f}, "
          f"Train Acc: {accuracy:.4f}, Train F1: {f1:.4f}, Train Prec: {precision:.4f}, Train Rec: {recall:.4f}, B_ACC: {balanced_acc:.4f}")

def validate(model, dataloader, criterion, device, phase="Validation"):
    model.eval()
    total_loss, total_correct, total_samples = 0, 0, 0
    all_preds, all_labels = [], []

    with torch.no_grad():
        for inputs, labels in tqdm(dataloader, desc=f"{phase}"):
            inputs, labels = inputs.to(device), labels.to(device)
            inputs = inputs.squeeze(1)
            outputs = model(inputs)
            loss = criterion(outputs, labels)

            total_loss += loss.item()
            preds = outputs.argmax(dim=1)
            total_correct += (preds == labels).sum().item()
            total_samples += labels.size(0)

            all_preds.extend(preds.cpu().numpy())
            all_labels.extend(labels.cpu().numpy())

    accuracy = total_correct / total_samples
    f1 = f1_score(all_labels, all_preds, average="weighted")
    val_bal_acc = balanced_accuracy_score(all_labels, all_preds)
    val_precision = precision_score(all_labels, all_preds, average="binary")
    val_recall = recall_score(all_labels, all_preds, average="binary")
    
    wandb.log({
        f"{phase} Val Loss": total_loss / len(dataloader),
        f"{phase} Val Accuracy": accuracy,
        f"{phase} Val F1 Score": f1,
        f"{phase} Val Precision": val_precision,
        f"{phase} Val Recall": val_recall,
        f"{phase} Val Balanced Accuracy": val_bal_acc,
    })
    print(f"{phase} Val Loss: {total_loss / len(dataloader):.4f}, "
          f"Val Acc: {accuracy:.4f}, Val F1: {f1:.4f}, Val Prec: {val_precision:.4f}, Val Rec: {val_recall:.4f}, Val B_ACC: {val_bal_acc:.4f}")
    return total_loss / len(dataloader), accuracy, f1

print("\nStep 1: Self-Supervised Pretraining on REAL Data")
for epoch in range(args.pretrain_epochs):
    train(model, train_loader, optimizer, criterion, device, epoch, phase="Pretrain")

torch.save(model.state_dict(), pretrain_ckpt)
print(f"\nPretraining completed! Model saved at: {pretrain_ckpt}")

print("\nInitializing Music2Vec + CCV Model for Fine-Tuning...")
model.load_state_dict(torch.load(pretrain_ckpt))

# model = CCV(embed_dim=768, num_heads=8, num_layers=6, num_classes=2, freeze_feature_extractor=True).to(device)
model = Music2VecClassifier(freeze_feature_extractor=False).to(device)
optimizer = optim.Adam(model.parameters(), lr=args.finetune_lr, weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.5)

print("\nStep 2: Fine-Tuning CCV Model using Music2Vec Features")
for epoch in range(args.finetune_epochs):
    train(model, train_loader, optimizer, criterion, device, epoch, phase="Fine-Tune")

torch.save(model.state_dict(), finetune_ckpt)
print(f"\nFine-Tuning completed! Model saved at: {finetune_ckpt}")