Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,919 Bytes
c3c908f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import os
import random
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
from torch.utils.data import DataLoader
from sklearn.metrics import f1_score, precision_score, recall_score, balanced_accuracy_score, classification_report
import wandb
import argparse
from datalib import FakeMusicCapsDataset, train_files, train_labels, val_files, val_labels
from networks import Wav2Vec2ForFakeMusic
'''
python inference.py --gpu 0 --model_type finetune --inference
'''
parser = argparse.ArgumentParser(description='AI Music Detection Training with Wav2Vec 2.0')
parser.add_argument('--gpu', type=str, default='2', help='GPU ID')
parser.add_argument('--batch_size', type=int, default=32, help='Batch size')
parser.add_argument('--learning_rate', type=float, default=1e-4, help='Learning rate')
parser.add_argument('--pretrain_epochs', type=int, default=20, help='Pretraining epochs (REAL data only)')
parser.add_argument('--finetune_epochs', type=int, default=10, help='Fine-tuning epochs (REAL + FAKE data)')
parser.add_argument('--checkpoint_dir', type=str, default='', help='Checkpoint directory')
parser.add_argument('--weight_decay', type=float, default=0.05, help="Weight decay for optimizer")
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.manual_seed(42)
random.seed(42)
np.random.seed(42)
wandb.init(project="", name=f"pretrain_{args.pretrain_epochs}_finetune_{args.finetune_epochs}", config=args)
print("Preparing datasets...")
train_dataset = FakeMusicCapsDataset(train_files, train_labels)
val_dataset = FakeMusicCapsDataset(val_files, val_labels)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=4)
pretrain_ckpt = os.path.join(args.checkpoint_dir, f"wav2vec2_pretrain_{args.pretrain_epochs}.pth")
finetune_ckpt = os.path.join(args.checkpoint_dir, f"wav2vec2_finetune_{args.finetune_epochs}.pth")
print("Initializing model...")
model = Wav2Vec2ForFakeMusic(num_classes=2, freeze_feature_extractor=True).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.1)
def train(model, dataloader, optimizer, criterion, scheduler, device, epoch, phase="Pretrain"):
model.train()
total_loss, total_correct, total_samples = 0, 0, 0
all_preds, all_labels = [], []
attention_maps = []
for inputs, labels in tqdm(dataloader, desc=f"{phase} Training Epoch {epoch+1}"):
inputs, labels = inputs.to(device), labels.to(device)
inputs = inputs.float()
outputs = model(inputs)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
preds = outputs.argmax(dim=1)
total_correct += (preds == labels).sum().item()
total_samples += labels.size(0)
all_preds.extend(preds.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
if hasattr(model, "get_attention_maps"):
attention_maps.append(model.get_attention_maps())
scheduler.step()
accuracy = total_correct / total_samples
f1 = f1_score(all_labels, all_preds, average="weighted")
precision = precision_score(all_labels, all_preds, average="binary")
recall = recall_score(all_labels, all_preds, average="binary")
balanced_acc = balanced_accuracy_score(all_labels, all_preds)
wandb.log({
f"{phase} Train Loss": total_loss / len(dataloader),
f"{phase} Train Accuracy": accuracy,
f"{phase} Train F1 Score": f1,
f"{phase} Train Precision": precision,
f"{phase} Train Recall": recall,
f"{phase} Train Balanced Accuracy": balanced_acc,
})
print(f"{phase} Train Epoch {epoch+1}: Train Loss: {total_loss / len(dataloader):.4f}, "
f"Train Acc: {accuracy:.4f}, Train F1: {f1:.4f}, Train Prec: {precision:.4f}, Train Rec: {recall:.4f}, B_ACC: {balanced_acc:.4f}")
def validate(model, dataloader, criterion, device, phase="Validation"):
model.eval()
total_loss, total_correct, total_samples = 0, 0, 0
all_preds, all_labels = [], []
with torch.no_grad():
for inputs, labels in tqdm(dataloader, desc=f"{phase}"):
inputs, labels = inputs.to(device), labels.to(device)
inputs = inputs.squeeze(1)
outputs = model(inputs)
loss = criterion(outputs, labels)
total_loss += loss.item()
preds = outputs.argmax(dim=1)
total_correct += (preds == labels).sum().item()
total_samples += labels.size(0)
all_preds.extend(preds.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
accuracy = total_correct / total_samples
f1 = f1_score(all_labels, all_preds, average="weighted")
val_bal_acc = balanced_accuracy_score(all_labels, all_preds)
val_precision = precision_score(all_labels, all_preds, average="binary")
val_recall = recall_score(all_labels, all_preds, average="binary")
wandb.log({
f"{phase} Val Loss": total_loss / len(dataloader),
f"{phase} Val Accuracy": accuracy,
f"{phase} Val F1 Score": f1,
f"{phase} Val Precision": val_precision,
f"{phase} Val Recall": val_recall,
f"{phase} Val Balanced Accuracy": val_bal_acc,
})
print(f"{phase} Val Loss: {total_loss / len(dataloader):.4f}, "
f"Val Acc: {accuracy:.4f}, Val F1: {f1:.4f}, Val Prec: {val_precision:.4f}, Val Rec: {val_recall:.4f}, Val B_ACC: {val_bal_acc:.4f}")
return total_loss / len(dataloader), accuracy, f1
print("\nStep 1: Self-Supervised Pretraining on REAL Data")
for epoch in range(args.pretrain_epochs):
train(model, train_loader, optimizer, criterion, scheduler, device, epoch, phase="Pretrain")
torch.save(model.state_dict(), pretrain_ckpt)
print(f"\nPretraining completed! Model saved at: {pretrain_ckpt}")
model = Wav2Vec2ForFakeMusic(num_classes=2, freeze_feature_extractor=False).to(device)
model.load_state_dict(torch.load(pretrain_ckpt))
print(f"\n🔍 Loaded Pretrained Model from {pretrain_ckpt}")
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate / 10, weight_decay=args.weight_decay)
print("\nStep 2: Fine-Tuning on REAL + FAKE Data")
for epoch in range(args.finetune_epochs):
train(model, train_loader, optimizer, criterion, scheduler, device, epoch, phase="Fine-Tune")
validate(model, val_loader, criterion, device, phase="Fine-Tune Validation")
torch.save(model.state_dict(), finetune_ckpt)
print(f"\nFine-Tuning completed! Model saved at: {finetune_ckpt}")
|