File size: 9,807 Bytes
c3c908f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import os
import glob
import librosa
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader, random_split
import torch.nn.functional as F
from sklearn.metrics import precision_score, recall_score, f1_score
from tqdm import tqdm
import argparse
import wandb

class RealFakeDataset(Dataset):
    """
    audio/FakeMusicCaps/
       β”œβ”€ real/
       β”‚   └─ MusicCaps/*.wav  (label=0)
       └─ generative/
           └─ .../*.wav        (label=1)
    """
    def __init__(self, root_dir, sr=16000, n_mels=64, target_duration=10.0):
      
        self.sr = sr
        self.n_mels = n_mels
        self.target_duration = target_duration
        self.target_samples = int(target_duration * sr)  # 10초 = 160,000 μƒ˜ν”Œ

        self.file_paths = []
        self.labels = []

        # Real 데이터 (label=0)
        real_dir = os.path.join(root_dir, "real")
        real_wav_files = glob.glob(os.path.join(real_dir, "**", "*.wav"), recursive=True)
        for f in real_wav_files:
            self.file_paths.append(f)
            self.labels.append(0)

        # Generative 데이터 (label=1)
        gen_dir = os.path.join(root_dir, "generative")
        gen_wav_files = glob.glob(os.path.join(gen_dir, "**", "*.wav"), recursive=True)
        for f in gen_wav_files:
            self.file_paths.append(f)
            self.labels.append(1)

    def __len__(self):
        return len(self.file_paths)

    def __getitem__(self, idx):
        audio_path = self.file_paths[idx]
        label = self.labels[idx]
        # print(f"[DEBUG] Path: {audio_path}, Label: {label}")  # μΆ”κ°€

        waveform, sr = librosa.load(audio_path, sr=self.sr, mono=True)

        current_samples = waveform.shape[0]
        if current_samples > self.target_samples:
            waveform = waveform[:self.target_samples]
        elif current_samples < self.target_samples:
            stretch_factor = self.target_samples / current_samples
            waveform = librosa.effects.time_stretch(waveform, rate=stretch_factor)
            waveform = waveform[:self.target_samples]

        mfcc = librosa.feature.mfcc(
            y=waveform, sr=self.sr, n_mfcc=self.n_mels, n_fft=1024, hop_length=256
        )
        mfcc = librosa.util.normalize(mfcc)

        mfcc = np.expand_dims(mfcc, axis=0)
        mfcc_tensor = torch.tensor(mfcc, dtype=torch.float)
        label_tensor = torch.tensor(label, dtype=torch.long)

        return mfcc_tensor, label_tensor


     
class AudioCNN(nn.Module):
    def __init__(self, num_classes=2):
        super(AudioCNN, self).__init__()
        self.conv_block = nn.Sequential(
        nn.Conv2d(1, 16, kernel_size=3, padding=1),
        nn.ReLU(),
        nn.MaxPool2d(2),
        nn.Conv2d(16, 32, kernel_size=3, padding=1),
        nn.ReLU(),
        nn.MaxPool2d(2),
        nn.AdaptiveAvgPool2d((4,4))  # μ΅œμ’… -> (B,32,4,4)
    )
        self.fc_block = nn.Sequential(
            nn.Linear(32*4*4, 128),
            nn.ReLU(),
            nn.Linear(128, num_classes)
        )


    def forward(self, x):
        x = self.conv_block(x)
        # x.shape: (B,32,new_freq,new_time)

        # 1) Flatten
        B, C, H, W = x.shape  # 동적 shape
        x = x.view(B, -1)     # (B, 32*H*W)

        # 2) FC
        x = self.fc_block(x)
        return x


def my_collate_fn(batch):
    mel_list, label_list = zip(*batch) 

    max_frames = max(m.shape[2] for m in mel_list)

    padded = []
    for m in mel_list:
        diff = max_frames - m.shape[2]
        if diff > 0:
            print(f"Padding applied: Original frames = {m.shape[2]}, Target frames = {max_frames}")
            m = F.pad(m, (0, diff), mode='constant', value=0)
        padded.append(m)

        
    mel_batch = torch.stack(padded, dim=0)
    label_batch = torch.tensor(label_list, dtype=torch.long)
    return mel_batch, label_batch


class EarlyStopping:
    def __init__(self, patience=5, delta=0, path='./ckpt/mfcc/early_stop_best_batch_{batch_size}_epochs_{epochs}_lr_{learning_rate}.pth', verbose=False):
        self.patience = patience
        self.delta = delta
        self.path = path
        self.verbose = verbose
        self.counter = 0
        self.best_loss = None
        self.early_stop = False

    def __call__(self, val_loss, model):
        if self.best_loss is None:
            self.best_loss = val_loss
            self._save_checkpoint(val_loss, model)
        elif val_loss > self.best_loss - self.delta:
            self.counter += 1
            if self.verbose:
                print(f"EarlyStopping counter: {self.counter} out of {self.patience}")
            if self.counter >= self.patience:
                self.early_stop = True
        else:
            self.best_loss = val_loss
            self._save_checkpoint(val_loss, model)
            self.counter = 0

    def _save_checkpoint(self, val_loss, model):
        if self.verbose:
            print(f"Validation loss decreased ({self.best_loss:.6f} --> {val_loss:.6f}). Saving model ...")
        torch.save(model.state_dict(), self.path)

def train(batch_size, epochs, learning_rate, root_dir="audio/FakeMusicCaps"):
    if not os.path.exists("./ckpt/mfcc/"):
        os.makedirs("./ckpt/mfcc/")

    wandb.init(
        project="AI Music Detection",
        name=f"mfcc_batch_{batch_size}_epochs_{epochs}_lr_{learning_rate}",
        config={"batch_size": batch_size, "epochs": epochs, "learning_rate": learning_rate},
    )

    dataset = RealFakeDataset(root_dir=root_dir)
    n_total = len(dataset)
    n_train = int(n_total * 0.8)
    n_val = n_total - n_train
    train_ds, val_ds = random_split(dataset, [n_train, n_val])

    train_loader = DataLoader(train_ds, batch_size=batch_size, shuffle=True, collate_fn=my_collate_fn)
    val_loader = DataLoader(val_ds, batch_size=batch_size, shuffle=False, collate_fn=my_collate_fn)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = AudioCNN(num_classes=2).to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=learning_rate)

    best_val_loss = float('inf')
    patience = 3
    patience_counter = 0

    for epoch in range(1, epochs + 1):
        print(f"\n[Epoch {epoch}/{epochs}]")

        # Training
        model.train()
        train_loss, train_correct, train_total = 0, 0, 0
        train_pbar = tqdm(train_loader, desc="Train", leave=False)
        for mel_batch, labels in train_pbar:
            mel_batch, labels = mel_batch.to(device), labels.to(device)
            optimizer.zero_grad()
            outputs = model(mel_batch)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

            train_loss += loss.item() * mel_batch.size(0)
            preds = outputs.argmax(dim=1)
            train_correct += (preds == labels).sum().item()
            train_total += labels.size(0)

            train_pbar.set_postfix({"loss": f"{loss.item():.4f}"})

        train_loss /= train_total
        train_acc = train_correct / train_total

        # Validation
        model.eval()
        val_loss, val_correct, val_total = 0, 0, 0
        all_preds, all_labels = [], []
        val_pbar = tqdm(val_loader, desc=" Val ", leave=False)
        with torch.no_grad():
            for mel_batch, labels in val_pbar:
                mel_batch, labels = mel_batch.to(device), labels.to(device)
                outputs = model(mel_batch)
                loss = criterion(outputs, labels)
                val_loss += loss.item() * mel_batch.size(0)
                preds = outputs.argmax(dim=1)
                val_correct += (preds == labels).sum().item()
                val_total += labels.size(0)
                all_preds.extend(preds.cpu().numpy())
                all_labels.extend(labels.cpu().numpy())

        val_loss /= val_total
        val_acc = val_correct / val_total
        val_precision = precision_score(all_labels, all_preds, average="macro")
        val_recall = recall_score(all_labels, all_preds, average="macro")
        val_f1 = f1_score(all_labels, all_preds, average="macro")

        print(f"Train Loss: {train_loss:.4f} Acc: {train_acc:.3f} | "
              f"Val Loss: {val_loss:.4f} Acc: {val_acc:.3f} "
              f"Precision: {val_precision:.3f} Recall: {val_recall:.3f} F1: {val_f1:.3f}")

        wandb.log({"train_loss": train_loss, "train_acc": train_acc,
                   "val_loss": val_loss, "val_acc": val_acc,
                   "val_precision": val_precision, "val_recall": val_recall, "val_f1": val_f1})

        if val_loss < best_val_loss:
            best_val_loss = val_loss
            patience_counter = 0
            best_model_path = f"./ckpt/mfcc/best_batch_{batch_size}_epochs_{epochs}_lr_{learning_rate}.pth"
            torch.save(model.state_dict(), best_model_path)
            print(f"[INFO] New best model saved: {best_model_path}")
        else:
            patience_counter += 1
            if patience_counter >= patience:
                print("Early stopping triggered!")
                break

    wandb.finish()

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Train AI Music Detection model.")
    parser.add_argument('--batch_size', type=int, required=True, help="Batch size for training")
    parser.add_argument('--epochs', type=int, required=True, help="Number of epochs")
    parser.add_argument('--learning_rate', type=float, required=True, help="Learning rate")
    parser.add_argument('--root_dir', type=str, default="audio/FakeMusicCaps", help="Root directory for dataset")

    args = parser.parse_args()

    train(batch_size=args.batch_size, epochs=args.epochs, learning_rate=args.learning_rate, root_dir=args.root_dir)