File size: 8,332 Bytes
c3c908f
 
 
 
 
 
 
 
 
 
 
 
 
 
0ede85b
c3c908f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ede85b
c3c908f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c410f34
c3c908f
 
 
 
 
 
693d2c7
 
 
 
 
 
0ede85b
c3c908f
0ede85b
c3c908f
8f94ca9
c3c908f
 
 
 
 
 
 
 
 
 
693d2c7
 
0ede85b
693d2c7
 
 
 
 
c3c908f
693d2c7
c3c908f
693d2c7
 
 
c3c908f
 
 
 
 
693d2c7
c3c908f
 
 
 
 
 
 
be8ccdd
c3c908f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
from pathlib import Path
import json
import numpy as np
import torch
from typing import List, Tuple, Optional
import pytorch_lightning as pl
from model import MusicAudioClassifier
import argparse
import torch
import torchaudio
import scipy.signal as signal
from typing import Dict, List
from dataset_f import FakeMusicCapsDataset
from networks import MERT_AudioCNN
from preprocess import get_segments_from_wav, find_optimal_segment_length




def load_audio(audio_path: str, sr: int = 24000) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    ์˜ค๋””์˜ค ํŒŒ์ผ์„ ๋ถˆ๋Ÿฌ์™€ ์„ธ๊ทธ๋จผํŠธ๋กœ ๋ถ„ํ• ํ•ฉ๋‹ˆ๋‹ค.
    ๊ณ ์ •๋œ ๊ธธ์ด์˜ ์„ธ๊ทธ๋จผํŠธ๋ฅผ ์ตœ๋Œ€ 48๊ฐœ ์ถ”์ถœํ•˜๊ณ , ๋ถ€์กฑํ•œ ๊ฒฝ์šฐ ํŒจ๋”ฉ์„ ์ถ”๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.
    
    Args:
        audio_path: ์˜ค๋””์˜ค ํŒŒ์ผ ๊ฒฝ๋กœ
        sr: ๋ชฉํ‘œ ์ƒ˜ํ”Œ๋ง ๋ ˆ์ดํŠธ (๊ธฐ๋ณธ๊ฐ’ 24000)
    
    Returns:
        Tuple containing:
        - ์˜ค๋””์˜ค ํŒŒํ˜•์ด ๋‹ด๊ธด ํ…์„œ (48, 1, 240000)
        - ํŒจ๋”ฉ ๋งˆ์Šคํฌ ํ…์„œ (48), True = ํŒจ๋”ฉ, False = ์‹ค์ œ ์˜ค๋””์˜ค
    """
    
    beats, downbeats = get_segments_from_wav(audio_path)
    optimal_length, cleaned_downbeats = find_optimal_segment_length(downbeats)
    waveform, sample_rate = torchaudio.load(audio_path)
    # ๋ฐ์ดํ„ฐ ํƒ€์ž…์„ float32๋กœ ๋ณ€ํ™˜
    waveform = waveform.to(torch.float32)

    if sample_rate != sr:
        resampler = torchaudio.transforms.Resample(sample_rate, sr)
        waveform = resampler(waveform)

    # ๋ชจ๋…ธ๋กœ ๋ณ€ํ™˜ (ํ•„์š”ํ•œ ๊ฒฝ์šฐ)
    if waveform.shape[0] > 1:
        waveform = torch.mean(waveform, dim=0, keepdim=True)

    # 120000 ์ƒ˜ํ”Œ = 5์ดˆ @ 24kHz
    fixed_samples = 240000

    # 5์ดˆ ๊ธธ์ด์˜ ๋ฌด์Œ(silence) ํŒจ๋”ฉ ์ƒ์„ฑ
    if waveform.shape[1]<= 240000:
        padding = torch.zeros(1, 120000, dtype=torch.float32)
        # ์›๋ณธ ์˜ค๋””์˜ค ๋’ค์— ํŒจ๋”ฉ ์ถ”๊ฐ€
        waveform = torch.cat([waveform, padding], dim=1)

# ๊ฐ downbeat์—์„œ ์‹œ์ž‘ํ•˜๋Š” segment ์ƒ์„ฑ
    segments = []
    for i, start_time in enumerate(cleaned_downbeats):
        # ์‹œ์ž‘ ์ƒ˜ํ”Œ ์ธ๋ฑ์Šค ๊ณ„์‚ฐ
        start_sample = int(start_time * sr)
        
        # ๋ ์ƒ˜ํ”Œ ์ธ๋ฑ์Šค ๊ณ„์‚ฐ (์‹œ์ž‘ ์ง€์  + ๊ณ ์ • ๊ธธ์ด)
        end_sample = start_sample + fixed_samples
        
        # ํŒŒ์ผ ๋์„ ๋„˜์–ด๊ฐ€๋Š”์ง€ ํ™•์ธ
        if end_sample > waveform.size(1):
            continue
        
        # ์ •ํ™•ํžˆ fixed_samples ๊ธธ์ด์˜ ์„ธ๊ทธ๋จผํŠธ ์ถ”์ถœ
        segment = waveform[:, start_sample:end_sample]
        # ํ•˜์ดํŒจ์Šค ํ•„ํ„ฐ ์ ์šฉ - ์ฑ„๋„ ์ฐจ์› ์œ ์ง€
        #filtered = torch.tensor(highpass_filter(segment.squeeze().numpy(), sr)).unsqueeze(0) # ์ด๊ฑฐ ๋ชจ๋ฅด๊ฒ ๋‹ค์•ผ..? ๋‹ค์–‘ํ•œ ์ „์ฒ˜๋ฆฌ ํ›„ inferenceํ•ด๋ณด๋Š”๊ฑฐ๋„ ๊ดœ์ฐฎ๊ฒ ๋„ค
        filtered = torch.tensor(segment.squeeze().numpy(), dtype=torch.float32).unsqueeze(0) # processor ์•ˆ์“ฐ๋„ค?
        #์—ฌ๊ธฐ์— ๋ชจ๋ธ๋ณ„ preprocess๊ฐ€ ์›๋ž˜๋Š” ๋“ค์–ด๊ฐ€๋Š”๊ฒŒ ๋งž์Œ. 
        segments.append(filtered)
        
        # ์ตœ๋Œ€ 48๊ฐœ ์„ธ๊ทธ๋จผํŠธ๋งŒ ์‚ฌ์šฉ
        if len(segments) >= 48:
            break
    
    # ์„ธ๊ทธ๋จผํŠธ๊ฐ€ ์—†๋Š” ๊ฒฝ์šฐ ์ฒ˜๋ฆฌ
    if not segments:
        return torch.zeros((1, 1, fixed_samples), dtype=torch.float32), torch.ones(1, dtype=torch.bool)
    
    # ์Šคํƒํ•˜์—ฌ ํ…์„œ๋กœ ๋ณ€ํ™˜ - (n_segments, 1, time_samples) ํ˜•ํƒœ ์œ ์ง€
    stacked_segments = torch.stack(segments)
    
    # ์‹ค์ œ ์„ธ๊ทธ๋จผํŠธ ์ˆ˜ (ํŒจ๋”ฉ ์•„๋‹˜)
    num_segments = stacked_segments.shape[0]
    
    # ํŒจ๋”ฉ ๋งˆ์Šคํฌ ์ƒ์„ฑ (False = ์‹ค์ œ ์˜ค๋””์˜ค, True = ํŒจ๋”ฉ)
    padding_mask = torch.zeros(48, dtype=torch.bool)
    
    # 48๊ฐœ ๋ฏธ๋งŒ์ธ ๊ฒฝ์šฐ ํŒจ๋”ฉ ์ถ”๊ฐ€
    if num_segments < 48:
        # ๋นˆ ์„ธ๊ทธ๋จผํŠธ๋กœ ํŒจ๋”ฉ (zeros)
        padding = torch.zeros((48 - num_segments, 1, fixed_samples), dtype=torch.float32)
        stacked_segments = torch.cat([stacked_segments, padding], dim=0)
        
        # ํŒจ๋”ฉ ๋งˆ์Šคํฌ ์„ค์ • (True = ํŒจ๋”ฉ)
        padding_mask[num_segments:] = True
    
    return stacked_segments, padding_mask

def run_inference(model, audio_segments: torch.Tensor, padding_mask: torch.Tensor, device: str = 'cuda' if torch.cuda.is_available() else 'cpu') -> Dict:
    """
    Run inference on audio segments.
    
    Args:
        model: The loaded model
        audio_segments: Preprocessed audio segments tensor (48, 1, 240000)
        device: Device to run inference on
    
    Returns:
        Dictionary with prediction results
    """
    model.eval()
    model.to(device)
    model = model.half()
    

    with torch.no_grad():
        # ๋ฐ์ดํ„ฐ ํ˜•ํƒœ ํ™•์ธ ๋ฐ ์กฐ์ •
        # wav_collate_with_mask ํ•จ์ˆ˜์™€ ์ผ์น˜ํ•˜๋„๋ก ์ฒ˜๋ฆฌ
        if audio_segments.shape[1] == 1:  # (48, 1, 240000) ํ˜•ํƒœ
            # ์ฑ„๋„ ์ฐจ์› ์ œ๊ฑฐํ•˜๊ณ  ๋ฐฐ์น˜ ์ฐจ์› ์ถ”๊ฐ€
            audio_segments = audio_segments[:, 0, :].unsqueeze(0)  # (1, 48, 240000)
        else:
            audio_segments = audio_segments.unsqueeze(0)  # (1, 48, 768) # ์‚ฌ์‹ค audio๊ฐ€ ์•„๋‹ˆ๋ผ embedding segments์ผ์ˆ˜๋„
        # ๋ฐ์ดํ„ฐ๋ฅผ half ํƒ€์ž…์œผ๋กœ ๋ณ€ํ™˜
        if padding_mask.dim() == 1:
            padding_mask = padding_mask.unsqueeze(0)  # [48] -> [1, 48]
        audio_segments = audio_segments.to(device)
        
        mask = padding_mask.to(device)
        
        # ์ถ”๋ก  ์‹คํ–‰ (๋งˆ์Šคํฌ ํฌํ•จ)
        outputs = model(audio_segments, mask)
        
        # ๋ชจ๋ธ ์ถœ๋ ฅ ๊ตฌ์กฐ์— ๋”ฐ๋ผ ์ฒ˜๋ฆฌ
        if isinstance(outputs, dict):
            result = outputs
        else:
            # ๋‹จ์ผ ํ…์„œ์ธ ๊ฒฝ์šฐ (๋กœ์ง“)
            logits = outputs.squeeze()
            prob = scaled_sigmoid(logits, scale_factor=1.0, linear_property=0.0).item()
            
            result = {
                "prediction": "Fake" if prob > 0.5 else "Real",
                "confidence": f"{max(prob, 1-prob)*100:.2f}",
                "fake_probability": f"{prob:.4f}",
                "real_probability": f"{1-prob:.4f}",
                "raw_output": logits.cpu().numpy().tolist()
            }
    
    return result

# Custom scaling function to moderate extreme sigmoid values
def scaled_sigmoid(x, scale_factor=0.2, linear_property=0.3):
    # Apply scaling to make sigmoid less extreme
    scaled_x = x * scale_factor
    # Combine sigmoid with linear component
    raw_prob = torch.sigmoid(scaled_x) * (1-linear_property) + linear_property * ((x + 25) / 50)
    # Clip to ensure bounds
    return torch.clamp(raw_prob, min=0.01, max=0.99)

# Apply the scaled sigmoid

def get_model(model_type, device):
    """Load the specified model."""
    if model_type == "MERT":
        ckpt_file = 'checkpoints/step=003432-val_loss=0.0216-val_acc=0.9963.ckpt'
        # map_location ์ถ”๊ฐ€
        model = MERT_AudioCNN.load_from_checkpoint(
            ckpt_file, 
            map_location=device  # ๋˜๋Š” 'cuda:0' ๋˜๋Š” 'cpu'
        ).to(device)
        model.eval()
        embed_dim = 768

    elif model_type == "pure_MERT":
        from ICASSP_2026.MERT.networks import MERTFeatureExtractor
        model = MERTFeatureExtractor().to(device)
        embed_dim = 768

    else:
        raise ValueError(f"Unknown model type: {model_type}")
   
    model.eval()
    return model, embed_dim

def inference(audio_path):
    # device ์„ค์ •์„ ๋ช…ํ™•ํžˆ ํ•˜๊ธฐ
    device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
    
    backbone_model, input_dim = get_model('MERT', device)
    segments, padding_mask = load_audio(audio_path, sr=24000)
    segments = segments.to(device).to(torch.float32)
    padding_mask = padding_mask.to(device).unsqueeze(0)    
    logits, embedding = backbone_model(segments.squeeze(1))

    # ๋ชจ๋ธ ๋กœ๋“œํ•  ๋•Œ๋„ map_location ์ถ”๊ฐ€
    model = MusicAudioClassifier.load_from_checkpoint(
        checkpoint_path='checkpoints/EmbeddingModel_MERT_768_2class_weighted-epoch=0014-val_loss=0.0099-val_acc=0.9993-val_f1=0.9978-val_precision=0.9967-val_recall=0.9989.ckpt',
        input_dim=input_dim,
        map_location=device  # ์ด ๋ถ€๋ถ„ ์ถ”๊ฐ€
    )
    
    # Run inference
    print(f"Segments shape: {segments.shape}")
    print("Running inference...")
    results = run_inference(model, embedding, padding_mask, device)
    
    # ๊ฒฐ๊ณผ ์ถœ๋ ฅ
    print(f"Results: {results}")
    
    return results

if __name__ == "__main__":
    inference("some path")