Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import torch | |
| import torch.nn.functional as F | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| from torch.utils.data import DataLoader | |
| from sklearn.metrics import precision_score, recall_score, f1_score, balanced_accuracy_score, confusion_matrix | |
| from datalib import ( | |
| FakeMusicCapsDataset, | |
| closed_test_files, closed_test_labels, | |
| open_test_files, open_test_labels, | |
| val_files, val_labels | |
| ) | |
| from networks import Music2VecClassifier | |
| import argparse | |
| ''' | |
| python3 test.py --gpu 1 --closed_test --ckpt_path "" | |
| ''' | |
| parser = argparse.ArgumentParser(description="AI Music Detection Testing with Music2Vec") | |
| parser.add_argument('--gpu', type=str, default='1', help='GPU ID') | |
| parser.add_argument('--batch_size', type=int, default=32, help='Batch size') | |
| parser.add_argument('--ckpt_path', type=str, default='/data/kym/AI_Music_Detection/Code/model/music2vec/ckpt/music2vec_pretrain_10.pth', help='Checkpoint directory') | |
| parser.add_argument('--model_name', type=str, default="music2vec", help="Model name") | |
| parser.add_argument('--closed_test', action="store_true", help="Use Closed Test (FakeMusicCaps full dataset)") | |
| parser.add_argument('--open_test', action="store_true", help="Use Open Set Test (SUNOCAPS_PATH included)") | |
| parser.add_argument('--output_path', type=str, default='', help='Path to save test results') | |
| args = parser.parse_args() | |
| os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| def plot_confusion_matrix(y_true, y_pred, classes, output_path): | |
| cm = confusion_matrix(y_true, y_pred) | |
| fig, ax = plt.subplots(figsize=(6, 6)) | |
| im = ax.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) | |
| ax.figure.colorbar(im, ax=ax) | |
| num_classes = cm.shape[0] | |
| tick_labels = classes[:num_classes] | |
| ax.set(xticks=np.arange(num_classes), | |
| yticks=np.arange(num_classes), | |
| xticklabels=tick_labels, | |
| yticklabels=tick_labels, | |
| ylabel='True label', | |
| xlabel='Predicted label') | |
| thresh = cm.max() / 2. | |
| for i in range(cm.shape[0]): | |
| for j in range(cm.shape[1]): | |
| ax.text(j, i, format(cm[i, j], 'd'), | |
| ha="center", va="center", | |
| color="white" if cm[i, j] > thresh else "black") | |
| fig.tight_layout() | |
| plt.savefig(output_path) | |
| plt.close(fig) | |
| model = Music2VecClassifier().to(device) | |
| ckpt_file = os.path.join(args.ckpt_path) | |
| if not os.path.exists(ckpt_file): | |
| raise FileNotFoundError(f"Checkpoint not found: {ckpt_file}") | |
| print(f"\nLoading model from {ckpt_file}") | |
| model.load_state_dict(torch.load(ckpt_file, map_location=device)) | |
| model.eval() | |
| torch.cuda.empty_cache() | |
| if args.closed_test: | |
| print("\nRunning Closed Test (FakeMusicCaps Full Dataset)...") | |
| test_dataset = FakeMusicCapsDataset(closed_test_files, closed_test_labels, target_duration=10.0) | |
| elif args.open_test: | |
| print("\nRunning Open Set Test (FakeMusicCaps + SunoCaps)...") | |
| test_dataset = FakeMusicCapsDataset(open_test_files, open_test_labels, target_duration=10.0) | |
| else: | |
| print("\nRunning Validation Test (FakeMusicCaps 20% Validation Set)...") | |
| test_dataset = FakeMusicCapsDataset(val_files, val_labels, target_duration=10.0) | |
| test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=8) | |
| def Test(model, test_loader, device): | |
| model.eval() | |
| test_loss, test_correct, test_total = 0, 0, 0 | |
| all_preds, all_labels = [], [] | |
| with torch.no_grad(): | |
| for data, target in test_loader: | |
| data, target = data.to(device), target.to(device) | |
| output = model(data) | |
| loss = F.cross_entropy(output, target) | |
| test_loss += loss.item() * data.size(0) | |
| preds = output.argmax(dim=1) | |
| test_correct += (preds == target).sum().item() | |
| test_total += target.size(0) | |
| all_labels.extend(target.cpu().numpy()) | |
| all_preds.extend(preds.cpu().numpy()) | |
| test_loss /= test_total | |
| test_acc = test_correct / test_total | |
| test_bal_acc = balanced_accuracy_score(all_labels, all_preds) | |
| test_precision = precision_score(all_labels, all_preds, average="binary") | |
| test_recall = recall_score(all_labels, all_preds, average="binary") | |
| test_f1 = f1_score(all_labels, all_preds, average="binary") | |
| print(f"\nTest Results - Loss: {test_loss:.4f} | Test Acc: {test_acc:.3f} | " | |
| f"Test B_ACC: {test_bal_acc:.4f} | Test Prec: {test_precision:.3f} | " | |
| f"Test Rec: {test_recall:.3f} | Test F1: {test_f1:.3f}") | |
| os.makedirs(args.output_path, exist_ok=True) | |
| conf_matrix_path = os.path.join(args.output_path, f"confusion_matrix_{args.model_name}.png") | |
| plot_confusion_matrix(all_labels, all_preds, classes=["real", "generative"], output_path=conf_matrix_path) | |
| print("\nEvaluating Model on Test Set...") | |
| Test(model, test_loader, device) | |