import torch import torch.nn as nn from transformers import Data2VecAudioModel, Wav2Vec2Processor class Music2VecClassifier(nn.Module): def __init__(self, num_classes=2, freeze_feature_extractor=True): super(Music2VecClassifier, self).__init__() self.processor = Wav2Vec2Processor.from_pretrained("facebook/data2vec-audio-base-960h") self.music2vec = Data2VecAudioModel.from_pretrained("m-a-p/music2vec-v1") if freeze_feature_extractor: for param in self.music2vec.parameters(): param.requires_grad = False # Conv1d for learnable weighted average across layers self.conv1d = nn.Conv1d(in_channels=13, out_channels=1, kernel_size=1) # Classification head self.classifier = nn.Sequential( nn.Linear(self.music2vec.config.hidden_size, 256), nn.ReLU(), nn.Dropout(0.3), nn.Linear(256, num_classes) ) def forward(self, input_values): input_values = input_values.squeeze(1) # Ensure shape [batch, time] with torch.no_grad(): outputs = self.music2vec(input_values, output_hidden_states=True) hidden_states = torch.stack(outputs.hidden_states) time_reduced = hidden_states.mean(dim=2) time_reduced = time_reduced.permute(1, 0, 2) weighted_avg = self.conv1d(time_reduced).squeeze(1) return self.classifier(weighted_avg), weighted_avg def unfreeze_feature_extractor(self): for param in self.music2vec.parameters(): param.requires_grad = True class Music2VecFeatureExtractor(nn.Module): def __init__(self, freeze_feature_extractor=True): super(Music2VecFeatureExtractor, self).__init__() self.processor = Wav2Vec2Processor.from_pretrained("facebook/data2vec-audio-base-960h") self.music2vec = Data2VecAudioModel.from_pretrained("m-a-p/music2vec-v1") if freeze_feature_extractor: for param in self.music2vec.parameters(): param.requires_grad = False # Conv1d for learnable weighted average across layers self.conv1d = nn.Conv1d(in_channels=13, out_channels=1, kernel_size=1) def forward(self, input_values): # input_values: [batch, time] input_values = input_values.squeeze(1) with torch.no_grad(): outputs = self.music2vec(input_values, output_hidden_states=True) hidden_states = torch.stack(outputs.hidden_states) # [num_layers, batch, time, hidden_dim] time_reduced = hidden_states.mean(dim=2) # [num_layers, batch, hidden_dim] time_reduced = time_reduced.permute(1, 0, 2) # [batch, num_layers, hidden_dim] weighted_avg = self.conv1d(time_reduced).squeeze(1) # [batch, hidden_dim] return weighted_avg ''' music2vec+CCV # ''' # import torch # import torch.nn as nn # from transformers import Data2VecAudioModel, Wav2Vec2Processor # import torch.nn.functional as F # ### Music2Vec Feature Extractor (Pretrained Model) # class Music2VecFeatureExtractor(nn.Module): # def __init__(self, freeze_feature_extractor=True): # super(Music2VecFeatureExtractor, self).__init__() # self.processor = Wav2Vec2Processor.from_pretrained("facebook/data2vec-audio-base-960h") # self.music2vec = Data2VecAudioModel.from_pretrained("m-a-p/music2vec-v1") # if freeze_feature_extractor: # for param in self.music2vec.parameters(): # param.requires_grad = False # # Conv1d for learnable weighted average across layers # self.conv1d = nn.Conv1d(in_channels=13, out_channels=1, kernel_size=1) # def forward(self, input_values): # with torch.no_grad(): # outputs = self.music2vec(input_values, output_hidden_states=True) # hidden_states = torch.stack(outputs.hidden_states) # [13, batch, time, hidden_size] # time_reduced = hidden_states.mean(dim=2) # 평균 풀링: [13, batch, hidden_size] # time_reduced = time_reduced.permute(1, 0, 2) # [batch, 13, hidden_size] # weighted_avg = self.conv1d(time_reduced).squeeze(1) # [batch, hidden_size] # return weighted_avg # Extracted feature representation # def unfreeze_feature_extractor(self): # for param in self.music2vec.parameters(): # param.requires_grad = True # Unfreeze for Fine-tuning # ### CNN Feature Extractor for CCV class CNNEncoder(nn.Module): def __init__(self, embed_dim=512): super(CNNEncoder, self).__init__() self.conv_block = nn.Sequential( nn.Conv2d(1, 16, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d((2,1)), # 기존 MaxPool2d(2)를 MaxPool2d((2,1))으로 변경 nn.Conv2d(16, 32, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d((1,1)), # 추가된 MaxPool2d(1,1)로 크기 유지 nn.AdaptiveAvgPool2d((4, 4)) # 최종 크기 조정 ) self.projection = nn.Linear(32 * 4 * 4, embed_dim) def forward(self, x): # print(f"Input shape before CNNEncoder: {x.shape}") # 디버깅용 출력 x = self.conv_block(x) B, C, H, W = x.shape x = x.view(B, -1) x = self.projection(x) return x ### Cross-Attention Module class CrossAttentionLayer(nn.Module): def __init__(self, embed_dim, num_heads): super(CrossAttentionLayer, self).__init__() self.multihead_attn = nn.MultiheadAttention(embed_dim, num_heads, batch_first=True) self.layer_norm = nn.LayerNorm(embed_dim) self.feed_forward = nn.Sequential( nn.Linear(embed_dim, embed_dim * 4), nn.ReLU(), nn.Linear(embed_dim * 4, embed_dim) ) self.attention_weights = None def forward(self, x, cross_input): attn_output, attn_weights = self.multihead_attn(query=x, key=cross_input, value=cross_input) self.attention_weights = attn_weights x = self.layer_norm(x + attn_output) feed_forward_output = self.feed_forward(x) x = self.layer_norm(x + feed_forward_output) return x ### Cross-Attention Transformer class CrossAttentionViT(nn.Module): def __init__(self, embed_dim=512, num_heads=8, num_layers=6, num_classes=2): super(CrossAttentionViT, self).__init__() self.cross_attention_layers = nn.ModuleList([ CrossAttentionLayer(embed_dim, num_heads) for _ in range(num_layers) ]) encoder_layer = nn.TransformerEncoderLayer(d_model=embed_dim, nhead=num_heads) self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) self.classifier = nn.Sequential( nn.LayerNorm(embed_dim), nn.Linear(embed_dim, num_classes) ) def forward(self, x, cross_attention_input): self.attention_maps = [] for layer in self.cross_attention_layers: x = layer(x, cross_attention_input) self.attention_maps.append(layer.attention_weights) x = x.unsqueeze(1).permute(1, 0, 2) x = self.transformer(x) x = x.mean(dim=0) x = self.classifier(x) return x ### CCV Model (Final Classifier) # class CCV(nn.Module): # def __init__(self, embed_dim=512, num_heads=8, num_layers=6, num_classes=2, freeze_feature_extractor=True): # super(CCV, self).__init__() # self.music2vec_extractor = Music2VecClassifier(freeze_feature_extractor=freeze_feature_extractor) # # CNN Encoder for Image Representation # self.encoder = CNNEncoder(embed_dim=embed_dim) # # Transformer with Cross-Attention # self.decoder = CrossAttentionViT(embed_dim=embed_dim, num_heads=num_heads, num_layers=num_layers, num_classes=num_classes) # def forward(self, x, cross_attention_input=None): # x = self.music2vec_extractor(x) # # print(f"After Music2VecExtractor: {x.shape}") # (batch, 2) 출력됨 # # CNNEncoder가 기대하는 입력 크기 맞추기 # x = x.unsqueeze(1).unsqueeze(-1) # (batch, 1, 2, 1) 형태로 변환 # # print(f"Before CNNEncoder: {x.shape}") # CNN 입력 확인 # x = self.encoder(x) # if cross_attention_input is None: # cross_attention_input = x # x = self.decoder(x, cross_attention_input) # return x class CCV(nn.Module): def __init__(self, embed_dim=768, num_heads=8, num_layers=6, num_classes=2, freeze_feature_extractor=True): super(CCV, self).__init__() self.feature_extractor = Music2VecFeatureExtractor(freeze_feature_extractor=freeze_feature_extractor) # Cross-Attention Transformer self.cross_attention_layers = nn.ModuleList([ CrossAttentionLayer(embed_dim, num_heads) for _ in range(num_layers) ]) # Transformer Encoder encoder_layer = nn.TransformerEncoderLayer(d_model=embed_dim, nhead=num_heads) self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) # Classification Head self.classifier = nn.Sequential( nn.LayerNorm(embed_dim), nn.Linear(embed_dim, num_classes) ) def forward(self, input_values): # Extract feature embeddings features = self.feature_extractor(input_values) # [batch, feature_dim] # Average over layer dimension if necessary (여기서는 이미 [batch, hidden_dim]) # Apply Cross-Attention Layers for layer in self.cross_attention_layers: features = layer(features.unsqueeze(1), features.unsqueeze(1)).squeeze(1) # Transformer Encoding encoded = self.transformer(features.unsqueeze(1)) encoded = encoded.mean(dim=1) # Classification Head logits = self.classifier(encoded) return logits def get_attention_maps(self): # 만약 CrossAttentionLayer의 attention_maps를 사용하고 싶다면 구현 return None