import torch import torch.nn as nn import torch.nn.functional as F import matplotlib.pyplot as plt import seaborn as sns ''' freeze_feature_extractor=True 시 Feature Extractor를 동결 (Pretraining) unfreeze_feature_extractor()를 호출하면 Fine-Tuning 가능 ''' import torch import torch.nn as nn import torch.nn.functional as F import matplotlib.pyplot as plt import seaborn as sns from transformers import Wav2Vec2Model class cnn(nn.Module): def __init__(self, embed_dim=512): super(cnn, self).__init__() self.conv_block = nn.Sequential( nn.Conv2d(1, 16, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(16, 32, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.AdaptiveAvgPool2d((4, 4)) ) self.projection = nn.Linear(32 * 4 * 4, embed_dim) def forward(self, x): x = self.conv_block(x) B, C, H, W = x.shape x = x.view(B, -1) x = self.projection(x) return x class CrossAttentionLayer(nn.Module): def __init__(self, embed_dim, num_heads): super(CrossAttentionLayer, self).__init__() self.multihead_attn = nn.MultiheadAttention(embed_dim, num_heads, batch_first=True) self.layer_norm = nn.LayerNorm(embed_dim) self.feed_forward = nn.Sequential( nn.Linear(embed_dim, embed_dim * 4), nn.ReLU(), nn.Linear(embed_dim * 4, embed_dim) ) self.attention_weights = None def forward(self, x, cross_input): # Cross-attention between x and cross_input attn_output, attn_weights = self.multihead_attn(query=x, key=cross_input, value=cross_input) self.attention_weights = attn_weights x = self.layer_norm(x + attn_output) feed_forward_output = self.feed_forward(x) x = self.layer_norm(x + feed_forward_output) return x class CrossAttentionViT(nn.Module): def __init__(self, embed_dim=512, num_heads=8, num_layers=6, num_classes=2): super(CrossAttentionViT, self).__init__() self.cross_attention_layers = nn.ModuleList([ CrossAttentionLayer(embed_dim, num_heads) for _ in range(num_layers) ]) encoder_layer = nn.TransformerEncoderLayer(d_model=embed_dim, nhead=num_heads) self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) self.classifier = nn.Sequential( nn.LayerNorm(embed_dim), nn.Linear(embed_dim, num_classes) ) def forward(self, x, cross_attention_input): self.attention_maps = [] for layer in self.cross_attention_layers: x = layer(x, cross_attention_input) self.attention_maps.append(layer.attention_weights) x = x.unsqueeze(1).permute(1, 0, 2) x = self.transformer(x) x = x.mean(dim=0) x = self.classifier(x) return x class CCV(nn.Module): def __init__(self, embed_dim=512, num_heads=8, num_layers=6, num_classes=2): super(CCV, self).__init__() self.encoder = cnn(embed_dim=embed_dim) self.decoder = CrossAttentionViT(embed_dim=embed_dim, num_heads=num_heads, num_layers=num_layers, num_classes=num_classes) def forward(self, x, cross_attention_input=None): x = self.encoder(x) if cross_attention_input is None: cross_attention_input = x x = self.decoder(x, cross_attention_input) # Attention Map 저장 self.attention_maps = self.decoder.attention_maps return x def get_attention_maps(self): return self.attention_maps import torch import torch.nn as nn from transformers import Wav2Vec2Model class Wav2Vec2ForFakeMusic(nn.Module): def __init__(self, num_classes=2, freeze_feature_extractor=True): super(Wav2Vec2ForFakeMusic, self).__init__() self.wav2vec = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base") if freeze_feature_extractor: for param in self.wav2vec.parameters(): param.requires_grad = False self.classifier = nn.Sequential( nn.Linear(self.wav2vec.config.hidden_size, 256), # 768 → 256 nn.ReLU(), nn.Dropout(0.3), nn.Linear(256, num_classes) # 256 → 2 (Binary Classification) ) def forward(self, x): x = x.squeeze(1) output = self.wav2vec(x) features = output["last_hidden_state"] # (batch_size, seq_len, feature_dim) pooled_features = features.mean(dim=1) # ✅ Mean Pooling 적용 (batch_size, feature_dim) logits = self.classifier(pooled_features) # (batch_size, num_classes) return logits, pooled_features def visualize_attention_map(attn_map, mel_spec, layer_idx): attn_map = attn_map.mean(dim=1).squeeze().cpu().numpy() # 여러 head 평균 mel_spec = mel_spec.squeeze().cpu().numpy() fig, axs = plt.subplots(2, 1, figsize=(10, 8)) # 1Log-Mel Spectrogram 시각화 sns.heatmap(mel_spec, cmap='inferno', ax=axs[0]) axs[0].set_title("Log-Mel Spectrogram") axs[0].set_xlabel("Time Frames") axs[0].set_ylabel("Mel Frequency Bins") # Attention Map 시각화 sns.heatmap(attn_map, cmap='viridis', ax=axs[1]) axs[1].set_title(f"Attention Map (Layer {layer_idx})") axs[1].set_xlabel("Time Frames") axs[1].set_ylabel("Query Positions") plt.tight_layout() plt.show() plt.savefig("/data/kym/AI_Music_Detection/Code/model/attention_map/crossattn.png")