import os import torch import torch.nn.functional as F import numpy as np import matplotlib.pyplot as plt from torch.utils.data import DataLoader from sklearn.metrics import precision_score, recall_score, f1_score, balanced_accuracy_score, confusion_matrix from datalib import ( FakeMusicCapsDataset, closed_test_files, closed_test_labels, open_test_files, open_test_labels, val_files, val_labels ) from networks import Wav2Vec2ForFakeMusic import tqdm from tqdm import tqdm import argparse ''' python3 test.py --finetune_test --closed_test | --open_test ''' parser = argparse.ArgumentParser(description="AI Music Detection Testing with Wav2Vec 2.0") parser.add_argument('--gpu', type=str, default='0', help='GPU ID') parser.add_argument('--batch_size', type=int, default=32, help='Batch size') parser.add_argument('--ckpt_path', type=str, default='', help='Checkpoint directory') parser.add_argument('--pretrain_test', action="store_true", help="Test Pretrained Wav2Vec2 Model") parser.add_argument('--finetune_test', action="store_true", help="Test Fine-Tuned Wav2Vec2 Model") parser.add_argument('--closed_test', action="store_true", help="Use Closed Test (FakeMusicCaps full dataset)") parser.add_argument('--open_test', action="store_true", help="Use Open Set Test (SUNOCAPS_PATH included)") parser.add_argument('--output_path', type=str, default='', help='Path to save test results') args = parser.parse_args() os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def plot_confusion_matrix(y_true, y_pred, classes, output_path): cm = confusion_matrix(y_true, y_pred) fig, ax = plt.subplots(figsize=(6, 6)) im = ax.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) ax.figure.colorbar(im, ax=ax) num_classes = cm.shape[0] tick_labels = classes[:num_classes] ax.set(xticks=np.arange(num_classes), yticks=np.arange(num_classes), xticklabels=tick_labels, yticklabels=tick_labels, ylabel='True label', xlabel='Predicted label') thresh = cm.max() / 2. for i in range(cm.shape[0]): for j in range(cm.shape[1]): ax.text(j, i, format(cm[i, j], 'd'), ha="center", va="center", color="white" if cm[i, j] > thresh else "black") fig.tight_layout() plt.savefig(output_path) plt.close(fig) if args.pretrain_test: ckpt_file = os.path.join(args.ckpt_path, "wav2vec2_pretrain_20.pth") print("\nšŸ” Loading Pretrained Model:", ckpt_file) model = Wav2Vec2ForFakeMusic(num_classes=2, freeze_feature_extractor=True).to(device) elif args.finetune_test: ckpt_file = os.path.join(args.ckpt_path, "wav2vec2_finetune_10.pth") print("\nšŸ” Loading Fine-Tuned Model:", ckpt_file) model = Wav2Vec2ForFakeMusic(num_classes=2, freeze_feature_extractor=False).to(device) else: raise ValueError("You must specify --pretrain_test or --finetune_test") if not os.path.exists(ckpt_file): raise FileNotFoundError(f"Checkpoint not found: {ckpt_file}") # model.load_state_dict(torch.load(ckpt_file, map_location=device)) # model.eval() ckpt = torch.load(ckpt_file, map_location=device) keys_to_remove = [key for key in ckpt.keys() if "masked_spec_embed" in key] for key in keys_to_remove: print(f"Removing unexpected key: {key}") del ckpt[key] try: model.load_state_dict(ckpt, strict=False) except RuntimeError as e: print("Model loading error:", e) print("Trying to load entire model...") model = torch.load(ckpt_file, map_location=device) model.to(device) model.eval() torch.cuda.empty_cache() if args.closed_test: print("\nRunning Closed Test (FakeMusicCaps Full Dataset)...") test_dataset = FakeMusicCapsDataset(closed_test_files, closed_test_labels) elif args.open_test: print("\nRunning Open Set Test (FakeMusicCaps + SunoCaps)...") test_dataset = FakeMusicCapsDataset(open_test_files, open_test_labels) else: print("\nRunning Validation Test (FakeMusicCaps 20% Validation Set)...") test_dataset = FakeMusicCapsDataset(val_files, val_labels) test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=16) def Test(model, test_loader, device, phase="Test"): model.eval() test_loss, test_correct, test_total = 0, 0, 0 all_preds, all_labels = [], [] with torch.no_grad(): for inputs, labels in tqdm(test_loader, desc=f"{phase}"): inputs, labels = inputs.to(device), labels.to(device) inputs = inputs.squeeze(1) # Ensure correct input shape output = model(inputs) loss = F.cross_entropy(output, labels) test_loss += loss.item() * inputs.size(0) preds = output.argmax(dim=1) test_correct += (preds == labels).sum().item() test_total += labels.size(0) all_labels.extend(labels.cpu().numpy()) all_preds.extend(preds.cpu().numpy()) test_loss /= test_total test_acc = test_correct / test_total test_bal_acc = balanced_accuracy_score(all_labels, all_preds) test_precision = precision_score(all_labels, all_preds, average="binary") test_recall = recall_score(all_labels, all_preds, average="binary") test_f1 = f1_score(all_labels, all_preds, average="binary") print(f"\n{phase} Test Results - Test Loss: {test_loss:.4f} | Test Accuracy: {test_acc:.3f} | " f"Test Balanced Acc: {test_bal_acc:.4f} | Test Precision: {test_precision:.3f} | " f"Test Recall: {test_recall:.3f} | Test F1: {test_f1:.3f}") os.makedirs(args.output_path, exist_ok=True) conf_matrix_path = os.path.join(args.output_path, f"confusion_matrix_{phase}_opentest.png") plot_confusion_matrix(all_labels, all_preds, classes=["real", "generative"], output_path=conf_matrix_path) print("\nEvaluating Model on Test Set...") Test(model, test_loader, device, phase="Pretrained Model" if args.pretrain_test else "Fine-Tuned Model")