import os import io import json import datetime import pandas as pd import requests import re import cv2 import numpy as np from urllib.request import urlopen from shapely.geometry import Polygon, MultiPolygon from pyproj import Transformer from tqdm import tqdm from typing import List, Dict, Any, Tuple, Optional import dateparser import tempfile # << kept (no-op, left as requested) from dataclasses import dataclass from datetime import datetime as _dt, date as _date import torch from PIL import Image from transformers import AutoProcessor from transformers import HunYuanVLForConditionalGeneration # super-image for upscaling from super_image import DrlnModel, ImageLoader # ================================ # --- Global Constants --- # ================================ BASE_LOTS_FILE = 'hunting_lots.csv' DATES_FILE = 'hunting_dates.csv' TILES_DIR = 'tiles' API_URL = "https://wms.inspire.geoportail.lu/geoserver/am/ogc/features/v1/collections/AM.HuntingLots/items?f=json&limit=1000&startIndex=0" WMS_BASE_URL = "https://wmsproxy.geoportail.lu/ogcproxywms" # --- Hunyuan OCR Configuration --- HUNYUAN_MODEL_NAME = "tencent/HunyuanOCR" # --- Super-resolution Configuration --- SUPERRES_MODEL_NAME = "eugenesiow/drln-bam" # DRLN model family SUPERRES_SCALE = 2 # must match model # Max tolerated OCR day shift when repairing dates MAX_OCR_DAY_SHIFT = 180 # ================================ # --- Utility Functions --- # ================================ def safe_literal_eval(val): """Safely evaluate string representations of lists/tuples.""" try: if isinstance(val, str) and (val.startswith('[') or val.startswith('(')): return json.loads(val.replace("'", '"').replace("(", "[").replace(")", "]")) return val except Exception: return [] def ensure_directory(directory: str): """Create directory if it doesn't exist.""" if not os.path.exists(directory): os.makedirs(directory) def file_uptodate(file_path: str, days: int, required_columns: List[str] = None) -> bool: """Check if file exists, is recent, and has required columns.""" if not os.path.exists(file_path): return False mod_time = datetime.datetime.fromtimestamp(os.path.getmtime(file_path)) if (datetime.datetime.now() - mod_time).days > days: return False if required_columns: try: df = pd.read_csv(file_path, converters={'dates': safe_literal_eval}) return all(col in df.columns for col in required_columns) except Exception: return False return True def load_image_safe(image_path: str) -> Optional[np.ndarray]: """Safely load an image with OpenCV, returning None if failed.""" try: image = cv2.imread(image_path) if image is None: print(f"Warning: Could not load image {image_path}") return None return image except Exception as e: print(f"Error loading image {image_path}: {e}") return None # ================================ # --- Part 1: Hunting Lot Data --- # ================================ def update_lots(url: str) -> pd.DataFrame: """Fetches and processes hunting lot geo data.""" print("Fetching latest hunting lot data from server...") try: with urlopen(url) as response: data = json.loads(response.read().decode()) except Exception as e: print(f"Error fetching lot data: {e}") return pd.DataFrame() features = data.get('features', []) transformer = Transformer.from_crs("EPSG:4326", "EPSG:3857", always_xy=True) processed_lots: List[Dict[str, Any]] = [] for item in tqdm(features, desc="Processing Lot Geometry"): properties = item.get('properties', {}) lot_num = properties.get('gml_description', 'Unknown') geometry = item.get('geometry') lot_data = { 'lot': lot_num, 'polygon': None, 'centroid': None, 'bbox': None } if geometry: geom_type = geometry.get('type') coords = geometry.get('coordinates') lot_data['polygon'] = coords try: poly_obj = None if geom_type == 'Polygon' and coords: poly_obj = Polygon(coords[0]) elif geom_type == 'MultiPolygon' and coords: poly_obj = MultiPolygon([Polygon(p[0]) for p in coords if len(p) > 0]) if poly_obj: centroid = poly_obj.centroid lot_data['centroid'] = (centroid.x, centroid.y) x, y = transformer.transform(centroid.x, centroid.y) lot_data['bbox'] = (x - 1000, y - 1000, x + 1000, y + 1000) except Exception as e: print(f"Geometry error for lot {lot_num}: {e}") processed_lots.append(lot_data) df = pd.DataFrame(processed_lots) df = df[df['lot'] != 'Unknown'].copy() df['lot'] = pd.to_numeric(df['lot'], errors='coerce') df = df.dropna(subset=['lot']).astype({'lot': int}).sort_values('lot').reset_index(drop=True) df.to_csv(BASE_LOTS_FILE, index=False) print(f"Saved full lot geometry data → {BASE_LOTS_FILE}") return df # ================================ # --- Part 2: Tile Download --- # ================================ def get_tile_path(lot_number: int) -> str: """Get path to original tile.""" return os.path.join(TILES_DIR, f"{lot_number:03d}.png") def tile_uptodate(lot_number: int, days: int = 7) -> bool: """Check if tile is recent.""" path = get_tile_path(lot_number) if not os.path.exists(path): return False mod_time = datetime.datetime.fromtimestamp(os.path.getmtime(path)) return (datetime.datetime.now() - mod_time).days <= days def download_tile(lot_number: int, bounds: Tuple[float, float, float, float]) -> bool: """Download WMS tile for a lot.""" try: bbox_str = ",".join([f"{coord:.2f}" for coord in bounds]) params = { 'SERVICE': 'WMS', 'VERSION': '1.3.0', 'REQUEST': 'GetMap', 'FORMAT': 'image/png', 'TRANSPARENT': 'true', 'LAYERS': 'anf_dates_battues', 'CRS': 'EPSG:3857', 'STYLES': '', 'WIDTH': '512', 'HEIGHT': '512', 'BBOX': bbox_str } response = requests.get(WMS_BASE_URL, params=params, timeout=30) response.raise_for_status() ensure_directory(TILES_DIR) with open(get_tile_path(lot_number), 'wb') as f: f.write(response.content) if os.path.exists(get_tile_path(lot_number)) and os.path.getsize(get_tile_path(lot_number)) > 0: return True else: print(f"Downloaded file is empty or missing for lot {lot_number}") return False except requests.exceptions.RequestException as e: print(f"Tile download failed for lot {lot_number}: {e}") return False except Exception as e: print(f"Unexpected error downloading tile for lot {lot_number}: {e}") return False # ================================ # --- Super-resolution (DRLN x4) --- # ================================ class SuperResolutionWrapper: """ Thin wrapper around super-image DRLN x4 model. Loaded once and reused for all tiles. Runs on GPU if available, otherwise on CPU. """ def __init__(self, model_name: str = SUPERRES_MODEL_NAME, scale: int = SUPERRES_SCALE): print(f"Loading super-resolution model '{model_name}' (scale x{scale})...") import torch # Pick device: prefer CUDA if available if torch.cuda.is_available(): self.device = torch.device("cuda") else: self.device = torch.device("cpu") # Load model and move to device self.model = DrlnModel.from_pretrained(model_name, scale=scale) self.model = self.model.to(self.device) self.model.eval() # inference mode # Debug info devices = {str(p.device) for p in self.model.parameters()} print(f"Super-resolution model loaded on device(s): {devices}") self.scale = scale def _open_with_background(self, input_path: str, bg_color=(255, 255, 255)) -> Image.Image: """ Open a possibly-transparent PNG and composite onto a solid background. Default background is white (255,255,255). """ img = Image.open(input_path) if img.mode in ("RGBA", "LA") or (img.mode == "P" and "transparency" in img.info): # Ensure RGBA img = img.convert("RGBA") bg = Image.new("RGB", img.size, bg_color) bg.paste(img, mask=img.split()[-1]) # use alpha channel as mask return bg else: # No alpha channel, just convert to RGB return img.convert("RGB") def upscale_image(self, input_path: str) -> Optional[Image.Image]: """ Upscale an image and return the upscaled PIL image directly without saving to disk. """ try: img = self._open_with_background(input_path, bg_color=(255, 255, 255)) lr = ImageLoader.load_image(img) if isinstance(lr, torch.Tensor): lr = lr.to(self.device) else: lr = lr.to(self.device) with torch.no_grad(): sr = self.model(lr) if isinstance(sr, torch.Tensor): sr_cpu = sr.detach().cpu() else: sr_cpu = sr # Convert tensor back to PIL.Image using super-image utilities # sr_cpu is expected to be in CHW, [0,1] np_img = sr_cpu.squeeze(0).clamp(0, 1).mul(255).byte().permute(1, 2, 0).numpy() return Image.fromarray(np_img) except Exception as e: print(f"Super-resolution (in-memory) failed for '{input_path}': {e}") return None # ================================ # --- Hunyuan OCR utilities --- # ================================ def clean_repeated_substrings(text: str) -> str: """Clean repeated substrings in text (your original logic).""" n = len(text) if n < 8000: return text for length in range(2, n // 10 + 1): candidate = text[-length:] count = 0 i = n - length while i >= 0 and text[i:i + length] == candidate: count += 1 i -= length if count >= 10: return text[:n - length * (count - 1)] return text @dataclass class Line: text: str x1: int y1: int x2: int y2: int @property def cx(self) -> float: return (self.x1 + self.x2) / 2 @property def cy(self) -> float: return (self.y1 + self.y2) / 2 PATTERN = re.compile(r""" (?P.+?) \( (?P\d+) , (?P\d+) \), \( (?P\d+) , (?P\d+) \) """, re.VERBOSE) def parse_compact_ocr_string(s: str, img_w: int, img_h: int) -> list[Line]: """ Parse HunyuanOCR's compact output string and denormalize coordinates from [0,1000] to image pixels. """ lines: list[Line] = [] for m in PATTERN.finditer(s): text = m.group("text").strip() x1_n = float(m.group("x1")) y1_n = float(m.group("y1")) x2_n = float(m.group("x2")) y2_n = float(m.group("y2")) x1 = int(x1_n * img_w / 1000.0) y1 = int(y1_n * img_h / 1000.0) x2 = int(x2_n * img_w / 1000.0) y2 = int(y2_n * img_h / 1000.0) lines.append(Line(text, x1, y1, x2, y2)) return lines def lines_are_close(a: Line, b: Line, max_dx: float, max_dy: float) -> bool: dx = abs(a.cx - b.cx) dy = abs(a.cy - b.cy) return dx <= max_dx and dy <= max_dy def cluster_lines_into_labels(lines: list[Line], img_w: int, img_h: int) -> list[list[Line]]: """ Cluster lines into labels based on spatial proximity in pixel space. Each cluster should correspond to one hunting-lot label. """ if not lines: return [] max_dx = img_w * 0.2 max_dy = img_h * 0.2 labels: list[list[Line]] = [] visited: set[int] = set() for i, line in enumerate(lines): if i in visited: continue cluster_idx = len(labels) labels.append([]) stack = [i] visited.add(i) while stack: idx = stack.pop() l = lines[idx] labels[cluster_idx].append(l) for j, other in enumerate(lines): if j in visited: continue if lines_are_close(l, other, max_dx, max_dy): visited.add(j) stack.append(j) for label in labels: label.sort(key=lambda l: (l.cy, l.cx)) return labels LOT_NUMBER_RE = re.compile(r"^\d{1,4}$") DATE_RE = re.compile(r"^\s*\d{1,2}/\d{1,2}/\d{4}\s*$") def is_lot_number(text: str) -> bool: return bool(LOT_NUMBER_RE.fullmatch(text.strip())) def is_battue_label(text: str) -> bool: t = text.lower() return "battue" in t and "treibjagd" in t def is_date_line(text: str) -> bool: return bool(DATE_RE.fullmatch(text)) def build_blocks_from_labels(labels: list[list[Line]]): """ From clusters of lines, build structured blocks: lot number + Battue/Treibjagd + list of dates. """ blocks = [] for li, label_lines in enumerate(labels): lot_line: Line | None = None label_line: Line | None = None date_lines: list[Line] = [] for l in label_lines: txt = l.text.strip() if is_lot_number(txt) and lot_line is None: lot_line = l elif is_battue_label(txt) and label_line is None: label_line = l elif is_date_line(txt): date_lines.append(l) if lot_line and label_line and date_lines: date_lines.sort(key=lambda l: l.cy) blocks.append({ "lot_line": lot_line, "label_line": label_line, "date_lines": date_lines, }) return blocks def edit_distance(a: str, b: str) -> int: dp = [[i + j if i * j == 0 else 0 for j in range(len(b) + 1)] for i in range(len(a) + 1)] for i in range(1, len(a) + 1): for j in range(1, len(b) + 1): dp[i][j] = min( dp[i - 1][j] + 1, dp[i][j - 1] + 1, dp[i - 1][j - 1] + (a[i - 1] != b[j - 1]), ) return dp[-1][-1] def lot_similarity(ocr_lot: str, target_lot: str) -> float: a = ocr_lot.strip() b = target_lot.strip() if not a or not b: return 0.0 dist = edit_distance(a, b) return 1 - dist / max(len(a), len(b)) def is_centered(line: Line, img_w: int, img_h: int, tolerance_ratio: float = 0.15) -> bool: """ A line is considered centered if it is centered both horizontally and vertically within the given tolerance. """ img_cx = img_w / 2 img_cy = img_h / 2 dx = abs(line.cx - img_cx) dy = abs(line.cy - img_cy) return dx <= tolerance_ratio * img_w and dy <= tolerance_ratio * img_h def choose_block_for_lot(blocks, target_lot: str, img_w: int, img_h: int): """ Apply heuristics with zero-padding logic: 1. Check for exact match using 0-padded lot numbers (e.g. "001" == "001"). 2. If no exact match, prefer a block that is centered both horizontally and vertically. """ exact_matches = [] centered_blocks = [] # Target lot is expected to be passed in as a 3-digit zero-padded string already # but we ensure consistency here just in case. if target_lot.isdigit(): target_lot_compare = f"{int(target_lot):03d}" else: target_lot_compare = target_lot for idx, b in enumerate(blocks): ocr_lot = b["lot_line"].text.strip() # Normalize OCR output to 3-digit zero-padded for comparison if ocr_lot.isdigit(): ocr_lot_compare = f"{int(ocr_lot):03d}" else: ocr_lot_compare = ocr_lot sim = lot_similarity(ocr_lot_compare, target_lot_compare) centered = is_centered(b["lot_line"], img_w, img_h) # 1) Exact lot number match (padded) → always keep, regardless of position if ocr_lot_compare == target_lot_compare: exact_matches.append(b) continue # 2) Non-exact, but potentially useful candidate if centered: centered_blocks.append((sim, b)) # 1) If we have exact matches, choose the one closest to center as a tie-breaker if exact_matches: exact_matches.sort( key=lambda blk: ( abs(blk["lot_line"].cx - img_w / 2), abs(blk["lot_line"].cy - img_h / 2), ) ) chosen = exact_matches[0] return chosen # 2) No exact match → pick the most centered (Fallback logic) if centered_blocks: img_center_x = img_w / 2 img_center_y = img_h / 2 centered_blocks.sort( key=lambda sb: ( abs(sb[1]["lot_line"].cx - img_center_x) + abs(sb[1]["lot_line"].cy - img_center_y), -sb[0], ) ) chosen_sim, chosen = centered_blocks[0] return chosen return None def parse_date_str(s: str) -> _date | None: try: return _dt.strptime(s.strip(), "%d/%m/%Y").date() except ValueError: return None def _current_season_bounds(today: Optional[_date] = None) -> tuple[_date, _date]: """ Compute the [min_date, max_date] for the current Autumn/Winter season. """ if today is None: today = _dt.now().date() y = today.year m = today.month if m in (1, 2): # Season started last year (Sep) and ends this Feb (with leap handling) season_start_year = y - 1 season_end_year = y elif 3 <= m <= 8: # Use upcoming season: Sep this year → Feb next year season_start_year = y season_end_year = y + 1 else: # 9–12 # Season started this Sep and ends next Feb season_start_year = y season_end_year = y + 1 season_min = _date(season_start_year, 9, 1) # End-of-Feb with leap year handling if (season_end_year % 4 == 0 and season_end_year % 100 != 0) or (season_end_year % 400 == 0): feb_last_day = 29 else: feb_last_day = 28 season_max = _date(season_end_year, 2, feb_last_day) return season_min, season_max def _clamp_and_fix_consecutive_dates( dates: list[_date], max_shift_days: int = MAX_OCR_DAY_SHIFT, ) -> list[_date]: """ Attempt to correct OCR date errors given season bounds and consecutiveness. """ if not dates: return [] season_min, season_max = _current_season_bounds() # Sort dates as recognized dates_sorted = sorted(dates) # Clamp to season range with small shifts only fixed = [] for d in dates_sorted: if d < season_min: delta = (season_min - d).days if delta <= max_shift_days: d = season_min else: continue elif d > season_max: delta = (d - season_max).days if delta <= max_shift_days: d = season_max else: continue fixed.append(d) if not fixed: return [] fixed.sort() # Enforce consecutiveness: treat first date as anchor, then +1 day increments anchor = fixed[0] consecutive = [anchor] for i in range(1, len(fixed)): expected = consecutive[-1] + datetime.timedelta(days=1) diff = abs((fixed[i] - expected).days) if diff <= max_shift_days: consecutive.append(expected) else: break # Final sanity: ensure all inside [season_min, season_max] consecutive = [d for d in consecutive if season_min <= d <= season_max] return consecutive def extract_dates_from_block(block): dates: list[_date] = [] for dline in block["date_lines"]: dt = parse_date_str(dline.text) if not dt: continue dates.append(dt) dates_fixed = _clamp_and_fix_consecutive_dates(dates) return dates_fixed def extract_lot_dates_from_output( output_texts, target_lot: str, image: Image.Image, ): if isinstance(output_texts, list): text = output_texts[0] else: text = output_texts img_w, img_h = image.size lines = parse_compact_ocr_string(text, img_w, img_h) if not lines: return None labels = cluster_lines_into_labels(lines, img_w, img_h) blocks = build_blocks_from_labels(labels) if not blocks: return None # Pass the already padded target_lot to the block chooser chosen = choose_block_for_lot(blocks, target_lot, img_w, img_h) if chosen is None: return None dates = extract_dates_from_block(chosen) if not dates: return None return { "lot_ocr": chosen["lot_line"].text.strip(), "lot_centered": is_centered(chosen["lot_line"], img_w, img_h), "dates": dates, "bbox_lot": ( chosen["lot_line"].x1, chosen["lot_line"].y1, chosen["lot_line"].x2, chosen["lot_line"].y2, ), } # ================================ # --- HunyuanOCR wrapper (reused) --- # ================================ class HunyuanOCR: """ Lightweight wrapper to load the model/processor once and run inference for many tiles. """ def __init__(self, model_name_or_path: str = HUNYUAN_MODEL_NAME): print(f"Loading HunyuanOCR model '{model_name_or_path}'...") self.processor = AutoProcessor.from_pretrained(model_name_or_path, use_fast=False) self.model = HunYuanVLForConditionalGeneration.from_pretrained( model_name_or_path, attn_implementation="eager", torch_dtype=torch.bfloat16, # explicit ).to("cuda") print("HunyuanOCR model loaded.") def run(self, image_path: str = None, image: Image.Image = None): """ You can either pass an image_path (on-disk PNG) or a PIL.Image via `image`. """ if image is None and image_path is None: raise ValueError("Either image_path or image must be provided.") processor = self.processor model = self.model if image is None: image_inputs = Image.open(image_path) else: image_inputs = image # For the chat template, we still need an identifier for the image. image_identifier = image_path if image_path is not None else "in-memory.png" messages1 = [ { "role": "user", "content": [ {"type": "image", "image": image_identifier}, { "type": "text", "text": ( "Detect and recognize text in the image, " "and output the text coordinates in a formatted manner." ), }, ], } ] messages = [messages1] texts = [ processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True) for msg in messages ] inputs = processor( text=texts, images=image_inputs, padding=True, return_tensors="pt", ) with torch.no_grad(): device = next(model.parameters()).device inputs = inputs.to(device) generated_ids = model.generate( **inputs, max_new_tokens=256, do_sample=False, ) if "input_ids" in inputs: input_ids = inputs.input_ids else: input_ids = inputs.inputs generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(input_ids, generated_ids) ] output_texts = clean_repeated_substrings( processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False, ) ) return image_inputs, output_texts # ================================ # --- Main Processing Logic (Hunyuan + Super-res) --- # ================================ def get_hunt_dates_with_ocr(df: pd.DataFrame) -> pd.DataFrame: """ Main function to extract hunting dates using: - WMS tiles (512x512) - 4x super-resolution via DRLN (in-memory) - HunyuanOCR for OCR """ ensure_directory(TILES_DIR) print("\nStep 1: Downloading and preparing tiles...") for _, row in tqdm(df.iterrows(), total=df.shape[0], desc="Preparing Tiles"): lot_num = int(row['lot']) if row['bbox'] and not tile_uptodate(lot_num): success = download_tile(lot_num, row['bbox']) if not success: print(f"Warning: Failed to download tile for lot {lot_num}") # Initialize models once try: sr_model = SuperResolutionWrapper(SUPERRES_MODEL_NAME, SUPERRES_SCALE) except Exception as e: print(f"\nFATAL ERROR during super-resolution initialization: {e}") exit(1) try: ocr = HunyuanOCR(HUNYUAN_MODEL_NAME) except Exception as e: print(f"\nFATAL ERROR during HunyuanOCR initialization: {e}") exit(1) all_dates: List[List[str]] = [] stats = { 'total_lots': len(df), 'lots_with_dates': 0, 'failed_lots': 0, 'no_tile': 0, 'tile_load_failed': 0, 'sr_failed': 0, } print("\nStep 2: Running super-resolution + HunyuanOCR...") for _, row in tqdm(df.iterrows(), total=df.shape[0], desc="Extracting Dates"): lot_number = int(row['lot']) # 1. Format target lot as 3-digit zero-padded string for consistent comparison # e.g. lot 1 becomes "001" lot_str = f"{lot_number:03d}" tile_path = get_tile_path(lot_number) print(f"\n--- Processing Lot {lot_str} ---") if not os.path.exists(tile_path): print(" > Status: Tile not found.") all_dates.append([]) stats['failed_lots'] += 1 stats['no_tile'] += 1 continue # Light check the original tile with cv2 test_image = load_image_safe(tile_path) if test_image is None: print(" > Status: Tile exists but cannot be loaded (cv2 test failed).") all_dates.append([]) stats['failed_lots'] += 1 stats['tile_load_failed'] += 1 continue # Super-res: in-memory upscaling only ocr_image_pil: Optional[Image.Image] = sr_model.upscale_image(tile_path) if ocr_image_pil is None: print(" > Status: Super-resolution failed; falling back to original tile.") stats['sr_failed'] += 1 ocr_input_path = tile_path else: ocr_input_path = None try: if ocr_image_pil is not None: # OCR from in-memory PIL image image_pil, output_texts = ocr.run(image=ocr_image_pil) else: # OCR from file path (original) image_pil, output_texts = ocr.run(image_path=ocr_input_path) except Exception as e: print(f" > HunyuanOCR inference error: {e}") all_dates.append([]) stats['failed_lots'] += 1 # Cleanup if ocr_image_pil: del ocr_image_pil continue # Pass the zero-padded lot_str and both dimensions to the extraction function result = extract_lot_dates_from_output(output_texts, lot_str, image_pil) if result is None: print(" > Status: No valid dates found for this lot.") all_dates.append([]) stats['failed_lots'] += 1 else: print(" > Status: Dates found.") chosen_lot = result['lot_ocr'] dates_objs: List[_date] = result['dates'] dates_strs = [d.strftime("%d/%m/%Y") for d in dates_objs] # --- Console Output for Verification --- print(f" > Real Lot: {lot_str}") print(f" > OCR Lot : {chosen_lot}") print(f" > Dates : {dates_strs}") # Normalize detected lot for warning check chosen_lot_padded = chosen_lot if chosen_lot.isdigit(): chosen_lot_padded = f"{int(chosen_lot):03d}" if lot_str != chosen_lot_padded: print(f" > Warning : OCR lot ({chosen_lot}) != Real lot ({lot_str}) [Used centered block]") all_dates.append(dates_strs) stats['lots_with_dates'] += 1 # Explicit memory cleanup if 'ocr_image_pil' in locals() and ocr_image_pil: del ocr_image_pil if 'image_pil' in locals() and image_pil: del image_pil print("\n=== HunyuanOCR + Super-resolution Summary ===") print(f"Total lots processed: {stats['total_lots']}") print(f"Lots with dates found: {stats['lots_with_dates']}") print(f"Failed (no tile): {stats['no_tile']}") print(f"Failed (tile load error): {stats['tile_load_failed']}") print(f"Failed (super-resolution errors): {stats['sr_failed']}") print(f"Failed (other): {stats['failed_lots'] - stats['no_tile'] - stats['tile_load_failed']}") success_rate = (stats['lots_with_dates'] / stats['total_lots']) * 100 if stats['total_lots'] > 0 else 0 print(f"Success Rate: {success_rate:.1f}%") df['dates'] = all_dates return df # ================================ # --- Main Execution --- # ================================ if __name__ == "__main__": REQUIRED_COLUMNS = ['lot', 'polygon', 'centroid', 'bbox', 'dates'] # --- Part 1: Get Lot Data --- if file_uptodate(BASE_LOTS_FILE, days=30, required_columns=['lot', 'polygon', 'centroid', 'bbox']): print(f"Using recent lot data from '{BASE_LOTS_FILE}'") df_lots = pd.read_csv( BASE_LOTS_FILE, converters={ 'polygon': safe_literal_eval, 'centroid': safe_literal_eval, 'bbox': safe_literal_eval } ) else: print("Lot data is outdated or missing. Fetching new data...") df_lots = update_lots(API_URL) if df_lots.empty: print("Failed to get lot data. Exiting.") exit(1) # --- Part 2: Get Hunt Dates --- if file_uptodate(DATES_FILE, days=1, required_columns=REQUIRED_COLUMNS): print(f"\nUsing recent hunting dates from '{DATES_FILE}'") df_dates = pd.read_csv( DATES_FILE, converters={ 'dates': safe_literal_eval, 'polygon': safe_literal_eval, 'centroid': safe_literal_eval, 'bbox': safe_literal_eval } ) else: print("\nHunting dates file is outdated or missing. Running HunyuanOCR + super-resolution process...") df_dates = get_hunt_dates_with_ocr(df_lots.copy()) df_save = df_dates.copy() df_save['dates'] = df_save['dates'].apply(lambda d: tuple(d) if isinstance(d, list) else ()) df_save[REQUIRED_COLUMNS].to_csv(DATES_FILE, index=False) print(f"\nSaved latest hunting dates to '{DATES_FILE}'") # --- Part 3: Display Results --- print("\n--- Final Results ---") df_dates['has_dates'] = df_dates['dates'].apply(lambda d: isinstance(d, (list, tuple)) and len(d) > 0) lots_with_dates = df_dates[df_dates['has_dates']].copy() print(f"Found dates for {len(lots_with_dates)} / {len(df_dates)} lots.") if not lots_with_dates.empty: print("\nFirst 15 lots with dates found:") for _, row in lots_with_dates.head(15).iterrows(): dates = row['dates'] if isinstance(row['dates'], list) else list(row['dates']) print(f"Lot {row['lot']:03d}: {dates}") else: print("\nNo hunting dates were found for any lots.") print("\nTroubleshooting:") print("1. Check that tiles are downloaded in tiles/") print("2. Check GPU memory usage for DRLN and HunyuanOCR")