Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- Hurun_Global_Rich_List_2025_COORD.csv +0 -0
- app.py +201 -0
- requirements.txt +5 -0
Hurun_Global_Rich_List_2025_COORD.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
app.py
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import plotly.express as px
|
| 4 |
+
import plotly.graph_objects as go
|
| 5 |
+
import numpy as np
|
| 6 |
+
import math
|
| 7 |
+
import random
|
| 8 |
+
|
| 9 |
+
# Load and preprocess data
|
| 10 |
+
df = pd.read_csv('Hurun_Global_Rich_List_2025_COORD.csv')
|
| 11 |
+
df['Wealth $B'] = pd.to_numeric(df['Wealth $B'], errors='coerce')
|
| 12 |
+
df = df.dropna(subset=['lat', 'lon'])
|
| 13 |
+
df['Log Wealth'] = np.log10(df['Wealth $B'])
|
| 14 |
+
|
| 15 |
+
# Extract country from location
|
| 16 |
+
df['Country'] = df['Location'].str.split(',').str[-1].str.strip()
|
| 17 |
+
|
| 18 |
+
# Add jitter to coordinates to prevent overlapping
|
| 19 |
+
def add_jitter(coords, jitter_range=0.2):
|
| 20 |
+
"""Add random jitter to coordinates to prevent overlapping markers"""
|
| 21 |
+
# Create a dictionary to track coordinate counts
|
| 22 |
+
coord_counts = {}
|
| 23 |
+
jittered_coords = []
|
| 24 |
+
|
| 25 |
+
for coord in coords:
|
| 26 |
+
# Round coordinates to 2 decimal places for grouping
|
| 27 |
+
rounded = (round(coord[0], 2), round(coord[1], 2))
|
| 28 |
+
|
| 29 |
+
# Count how many times we've seen this approximate location
|
| 30 |
+
count = coord_counts.get(rounded, 0)
|
| 31 |
+
coord_counts[rounded] = count + 1
|
| 32 |
+
|
| 33 |
+
# Only add jitter if there are multiple points at this location
|
| 34 |
+
if count > 0:
|
| 35 |
+
# Calculate jitter based on count to spread points
|
| 36 |
+
angle = 2 * math.pi * (count / 8) # Spread in 8 directions
|
| 37 |
+
distance = jitter_range * min(0.5 + count/10, 1.5) # Scale with count
|
| 38 |
+
|
| 39 |
+
jitter_lat = math.sin(angle) * distance
|
| 40 |
+
jitter_lon = math.cos(angle) * distance
|
| 41 |
+
|
| 42 |
+
jittered_coords.append((coord[0] + jitter_lat, coord[1] + jitter_lon))
|
| 43 |
+
else:
|
| 44 |
+
jittered_coords.append(coord)
|
| 45 |
+
|
| 46 |
+
return jittered_coords
|
| 47 |
+
|
| 48 |
+
# Create logarithmic scale for visualization
|
| 49 |
+
def create_globe():
|
| 50 |
+
# Calculate logarithmic values for visualization
|
| 51 |
+
df['Size'] = df['Log Wealth'] * 8
|
| 52 |
+
df['Color Value'] = df['Log Wealth']
|
| 53 |
+
|
| 54 |
+
# Add jitter to coordinates
|
| 55 |
+
coords = list(zip(df['lat'], df['lon']))
|
| 56 |
+
jittered_coords = add_jitter(coords)
|
| 57 |
+
df['lat_jitter'] = [c[0] for c in jittered_coords]
|
| 58 |
+
df['lon_jitter'] = [c[1] for c in jittered_coords]
|
| 59 |
+
|
| 60 |
+
# Generate linear tick positions for legend
|
| 61 |
+
min_log = df['Log Wealth'].min()
|
| 62 |
+
max_log = df['Log Wealth'].max()
|
| 63 |
+
|
| 64 |
+
wealth_ticks = [1, 10, 30, 100, 300, 1000]
|
| 65 |
+
log_ticks = [math.log10(x) for x in wealth_ticks if x <= 10**max_log and x >= 10**min_log]
|
| 66 |
+
tick_labels = [f"${x}B" for x in wealth_ticks if x <= 10**max_log and x >= 10**min_log]
|
| 67 |
+
|
| 68 |
+
fig = go.Figure(go.Scattergeo(
|
| 69 |
+
lon = df['lon_jitter'],
|
| 70 |
+
lat = df['lat_jitter'],
|
| 71 |
+
text = df.apply(lambda row: (
|
| 72 |
+
f"<b>{row['Name']}</b><br>"
|
| 73 |
+
f"Rank: {row['Rank']}<br>"
|
| 74 |
+
f"Wealth: ${row['Wealth $B']}B<br>"
|
| 75 |
+
f"Enterprise: {row['Enterprise']}<br>"
|
| 76 |
+
f"Sector: {row['Sector']}<br>"
|
| 77 |
+
f"Age: {row['Age']}<br>"
|
| 78 |
+
f"Location: {row['Location']}"
|
| 79 |
+
), axis=1),
|
| 80 |
+
marker = dict(
|
| 81 |
+
size = df['Size'],
|
| 82 |
+
color = df['Color Value'],
|
| 83 |
+
colorscale = 'Turbo',
|
| 84 |
+
opacity = 0.7,
|
| 85 |
+
line_color='rgb(40,40,40)',
|
| 86 |
+
line_width=0.5,
|
| 87 |
+
sizemode = 'diameter',
|
| 88 |
+
colorbar = dict(
|
| 89 |
+
title="Wealth (Billion USD)",
|
| 90 |
+
thickness=15,
|
| 91 |
+
len=0.35,
|
| 92 |
+
bgcolor='rgba(255,255,255,0.5)',
|
| 93 |
+
tickvals = log_ticks,
|
| 94 |
+
ticktext = tick_labels
|
| 95 |
+
)
|
| 96 |
+
),
|
| 97 |
+
hoverinfo = 'text',
|
| 98 |
+
name = ''
|
| 99 |
+
))
|
| 100 |
+
|
| 101 |
+
fig.update_geos(
|
| 102 |
+
projection_type="orthographic",
|
| 103 |
+
showcoastlines=True,
|
| 104 |
+
coastlinecolor="RebeccaPurple",
|
| 105 |
+
showland=True,
|
| 106 |
+
landcolor="rgb(243, 243, 243)",
|
| 107 |
+
showocean=True,
|
| 108 |
+
oceancolor="rgb(217, 244, 252)"
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
fig.update_layout(
|
| 112 |
+
height=500,
|
| 113 |
+
margin={"r":0,"t":0,"l":0,"b":0},
|
| 114 |
+
paper_bgcolor='rgba(0,0,0,0)',
|
| 115 |
+
geo=dict(bgcolor='rgba(0,0,0,0)')
|
| 116 |
+
)
|
| 117 |
+
return fig
|
| 118 |
+
|
| 119 |
+
# Create distribution plots
|
| 120 |
+
def create_age_plot():
|
| 121 |
+
fig = px.histogram(df, x='Age', nbins=20,
|
| 122 |
+
title='Age Distribution',
|
| 123 |
+
color_discrete_sequence=['#636EFA'])
|
| 124 |
+
fig.update_layout(height=300)
|
| 125 |
+
return fig
|
| 126 |
+
|
| 127 |
+
def create_country_plot():
|
| 128 |
+
top_countries = df['Country'].value_counts().head(10)
|
| 129 |
+
fig = px.bar(top_countries,
|
| 130 |
+
title='Top 10 Countries',
|
| 131 |
+
labels={'value': 'Count', 'index': 'Country'},
|
| 132 |
+
color=top_countries.index,
|
| 133 |
+
color_discrete_sequence=px.colors.qualitative.Pastel)
|
| 134 |
+
fig.update_layout(height=300, showlegend=False)
|
| 135 |
+
return fig
|
| 136 |
+
|
| 137 |
+
def create_gender_plot():
|
| 138 |
+
gender_counts = df['Sex'].value_counts()
|
| 139 |
+
fig = px.pie(gender_counts,
|
| 140 |
+
names=gender_counts.index,
|
| 141 |
+
values=gender_counts.values,
|
| 142 |
+
title='Gender Distribution',
|
| 143 |
+
hole=0.4)
|
| 144 |
+
fig.update_layout(height=300)
|
| 145 |
+
return fig
|
| 146 |
+
|
| 147 |
+
def create_sector_plot():
|
| 148 |
+
top_sectors = df['Sector'].value_counts().head(10)
|
| 149 |
+
fig = px.bar(top_sectors,
|
| 150 |
+
title='Top 10 Sectors',
|
| 151 |
+
labels={'value': 'Count', 'index': 'Sector'},
|
| 152 |
+
color=top_sectors.index,
|
| 153 |
+
color_discrete_sequence=px.colors.qualitative.Pastel)
|
| 154 |
+
fig.update_layout(height=300, showlegend=False)
|
| 155 |
+
return fig
|
| 156 |
+
|
| 157 |
+
# Create display dataframe without extra columns
|
| 158 |
+
display_columns = ['Rank', 'Rank change', 'Wealth $B', 'Enterprise', 'Sector',
|
| 159 |
+
'Name', 'Sex', 'Age', 'Sidekick', 'Location']
|
| 160 |
+
display_df = df[display_columns].sort_values('Rank').reset_index(drop=True)
|
| 161 |
+
|
| 162 |
+
# Create Gradio interface
|
| 163 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 164 |
+
gr.Markdown("# 🗺️ Global Billionaires Dashboard 2025")
|
| 165 |
+
gr.Markdown("Interactive visualisation of the world's wealthiest individuals")
|
| 166 |
+
|
| 167 |
+
with gr.Row():
|
| 168 |
+
with gr.Column():
|
| 169 |
+
gr.Markdown("### 🌍 Global Wealth Distribution")
|
| 170 |
+
gr.Markdown("Circle size and color intensity both represent wealth on a logarithmic scale")
|
| 171 |
+
gr.Markdown("Nearby points are slightly randomized to prevent overlapping")
|
| 172 |
+
globe = gr.Plot(create_globe(), label="Globe")
|
| 173 |
+
|
| 174 |
+
with gr.Row():
|
| 175 |
+
with gr.Column():
|
| 176 |
+
gr.Markdown("### 📊 Distribution Analysis")
|
| 177 |
+
|
| 178 |
+
with gr.Row():
|
| 179 |
+
with gr.Column():
|
| 180 |
+
age_plot = gr.Plot(create_age_plot())
|
| 181 |
+
with gr.Column():
|
| 182 |
+
country_plot = gr.Plot(create_country_plot())
|
| 183 |
+
|
| 184 |
+
with gr.Row():
|
| 185 |
+
with gr.Column():
|
| 186 |
+
gender_plot = gr.Plot(create_gender_plot())
|
| 187 |
+
with gr.Column():
|
| 188 |
+
sector_plot = gr.Plot(create_sector_plot())
|
| 189 |
+
|
| 190 |
+
with gr.Row():
|
| 191 |
+
with gr.Column():
|
| 192 |
+
gr.Markdown("### 📋 Full Billionaire Data")
|
| 193 |
+
data_table = gr.Dataframe(
|
| 194 |
+
value=display_df,
|
| 195 |
+
interactive=True,
|
| 196 |
+
column_widths=["auto"] * len(display_columns),
|
| 197 |
+
wrap=True,
|
| 198 |
+
col_count=(len(display_columns), "fixed")
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
plotly
|
| 2 |
+
gradio
|
| 3 |
+
pandas
|
| 4 |
+
numpy
|
| 5 |
+
lxml
|