Use small spacy seems to work
Browse files
app.py
CHANGED
|
@@ -43,9 +43,7 @@ def get_sentence_embedding_model():
|
|
| 43 |
@st.experimental_singleton
|
| 44 |
def get_spacy():
|
| 45 |
#nlp = spacy.load('en_core_web_lg')
|
| 46 |
-
|
| 47 |
-
nlp = en_core_web_lg.load()
|
| 48 |
-
print("END")
|
| 49 |
return nlp
|
| 50 |
|
| 51 |
|
|
@@ -304,8 +302,8 @@ currently selected article.""")
|
|
| 304 |
sentence_embedding_model = get_sentence_embedding_model()
|
| 305 |
# tagger = get_flair_tagger()
|
| 306 |
ner_model = get_transformer_pipeline()
|
| 307 |
-
|
| 308 |
-
nlp = en_core_web_sm.load()
|
| 309 |
|
| 310 |
# GENERATING SUMMARIES PART
|
| 311 |
st.header("Generating summaries")
|
|
|
|
| 43 |
@st.experimental_singleton
|
| 44 |
def get_spacy():
|
| 45 |
#nlp = spacy.load('en_core_web_lg')
|
| 46 |
+
nlp = en_core_web_sm.load()
|
|
|
|
|
|
|
| 47 |
return nlp
|
| 48 |
|
| 49 |
|
|
|
|
| 302 |
sentence_embedding_model = get_sentence_embedding_model()
|
| 303 |
# tagger = get_flair_tagger()
|
| 304 |
ner_model = get_transformer_pipeline()
|
| 305 |
+
nlp = get_spacy()
|
| 306 |
+
#nlp = en_core_web_sm.load()
|
| 307 |
|
| 308 |
# GENERATING SUMMARIES PART
|
| 309 |
st.header("Generating summaries")
|