moazx's picture
Initial commit with all files including LFS
73c6377
"""
Medical Query Router for RAG AI Advisor
"""
import asyncio
import logging
from fastapi import APIRouter, HTTPException, status
from fastapi.responses import StreamingResponse
import sys
import os
import json
# Add src to path for imports
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
from core.agent import safe_run_agent, safe_run_agent_streaming, clear_session_memory, get_active_sessions
from api.models import ChatRequest, ChatResponse, HBVPatientInput, HBVAssessmentResponse
from typing import Optional
logger = logging.getLogger(__name__)
router = APIRouter(tags=["medical"])
def _build_contextual_query(
query: str,
patient_context: Optional[HBVPatientInput] = None,
assessment_result: Optional[HBVAssessmentResponse] = None
) -> str:
"""
Build an enhanced query that includes patient context and assessment results.
This helps the agent provide more relevant answers by understanding the specific
patient case being discussed.
Args:
query: The doctor's original question
patient_context: Optional patient data from assessment
assessment_result: Optional assessment result with eligibility and recommendations
Returns:
Enhanced query string with context
"""
if not patient_context and not assessment_result:
# No context, return original query
return query
context_parts = [query]
# Add patient context if available
if patient_context:
context_parts.append("\n\n[PATIENT CONTEXT FOR THIS QUESTION]")
context_parts.append(f"- Age: {patient_context.age}, Sex: {patient_context.sex}")
context_parts.append(f"- HBsAg: {patient_context.hbsag_status}, HBeAg: {patient_context.hbeag_status}")
context_parts.append(f"- HBV DNA: {patient_context.hbv_dna_level:,.0f} IU/mL")
context_parts.append(f"- ALT: {patient_context.alt_level} U/L")
context_parts.append(f"- Fibrosis: {patient_context.fibrosis_stage}")
if patient_context.pregnancy_status == "Pregnant":
context_parts.append(f"- Pregnancy: {patient_context.pregnancy_status}")
if patient_context.immunosuppression_status and patient_context.immunosuppression_status != "None":
context_parts.append(f"- Immunosuppression: {patient_context.immunosuppression_status}")
if patient_context.coinfections:
context_parts.append(f"- Coinfections: {', '.join(patient_context.coinfections)}")
# Add assessment result if available
if assessment_result:
context_parts.append("\n[PRIOR ASSESSMENT RESULT]")
context_parts.append(f"- Eligible for treatment: {assessment_result.eligible}")
# Include brief summary of recommendations (first 200 chars)
rec_summary = assessment_result.recommendations[:200] + "..." if len(assessment_result.recommendations) > 200 else assessment_result.recommendations
context_parts.append(f"- Assessment summary: {rec_summary}")
return "\n".join(context_parts)
@router.post("/ask", response_model=ChatResponse)
async def ask(request: ChatRequest):
"""
Interactive chat endpoint for doctors to ask questions about HBV guidelines.
This endpoint:
1. Accepts doctor's questions about HBV treatment guidelines
2. Maintains conversation context via session_id
3. Optionally includes patient context from prior assessment
4. Uses the same SASLT 2021 guidelines vector store as /assess
5. Returns evidence-based answers with guideline citations
Args:
request: ChatRequest containing query, session_id, and optional patient/assessment context
Returns:
ChatResponse with AI answer and session_id
"""
try:
# Validate input
if not request.query or not request.query.strip():
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="Query cannot be empty"
)
if len(request.query) > 2000:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="Query is too long. Maximum length is 2000 characters."
)
logger.info(f"Processing chat request - Session: {request.session_id}, Query length: {len(request.query)}")
# Build enhanced query with context if provided
enhanced_query = _build_contextual_query(
query=request.query,
patient_context=request.patient_context,
assessment_result=request.assessment_result
)
# Process through agent with session context
response = await safe_run_agent(
user_input=enhanced_query,
session_id=request.session_id
)
if not response or not response.strip():
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail="Received empty response from AI agent"
)
logger.info(f"Chat request completed - Session: {request.session_id}")
return ChatResponse(
response=response,
session_id=request.session_id
)
except HTTPException:
# Re-raise HTTP exceptions as-is
raise
except Exception as e:
logger.error(f"Error processing chat request: {str(e)}", exc_info=True)
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Error processing medical query: {str(e)}"
)
@router.post("/ask/stream")
async def ask_stream(request: ChatRequest):
"""
Interactive streaming chat endpoint for doctors to ask questions about HBV guidelines.
This endpoint:
1. Streams AI responses in real-time for better UX
2. Accepts doctor's questions about HBV treatment guidelines
3. Maintains conversation context via session_id
4. Optionally includes patient context from prior assessment
5. Uses the same SASLT 2021 guidelines vector store as /assess
6. Returns evidence-based answers with guideline citations
Args:
request: ChatRequest containing query, session_id, and optional patient/assessment context
Returns:
StreamingResponse with markdown-formatted AI answer
"""
# Validate input before starting stream
try:
if not request.query or not request.query.strip():
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="Query cannot be empty"
)
if len(request.query) > 2000:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="Query is too long. Maximum length is 2000 characters."
)
logger.info(f"Processing streaming chat request - Session: {request.session_id}, Query length: {len(request.query)}")
except HTTPException:
raise
except Exception as e:
logger.error(f"Validation error in streaming chat: {str(e)}")
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"Invalid request: {str(e)}"
)
async def event_stream():
try:
# Build enhanced query with context if provided
enhanced_query = _build_contextual_query(
query=request.query,
patient_context=request.patient_context,
assessment_result=request.assessment_result
)
chunk_buffer = ""
chunk_count = 0
async for chunk in safe_run_agent_streaming(
user_input=enhanced_query,
session_id=request.session_id
):
chunk_buffer += chunk
chunk_count += 1
# Send chunks in reasonable sizes for smoother streaming
if len(chunk_buffer) >= 10:
yield chunk_buffer
chunk_buffer = ""
await asyncio.sleep(0.01)
# Send any remaining content
if chunk_buffer:
yield chunk_buffer
logger.info(f"Streaming chat completed - Session: {request.session_id}, Chunks: {chunk_count}")
except Exception as e:
error_msg = f"\n\n**Error**: An error occurred while processing your request. Please try again or contact support if the issue persists."
logger.error(f"Error in streaming chat: {str(e)}", exc_info=True)
yield error_msg
return StreamingResponse(event_stream(), media_type="text/markdown")
@router.delete("/session/{session_id}")
async def clear_session(session_id: str):
"""
Clear conversation history for a specific session.
This is useful when:
- Starting a new patient case
- Switching between different patient discussions
- Resetting the conversation context
Args:
session_id: The session identifier to clear
Returns:
Success message with session status
"""
try:
logger.info(f"Clearing session: {session_id}")
success = clear_session_memory(session_id)
if success:
return {
"status": "success",
"message": f"Session '{session_id}' cleared successfully",
"session_id": session_id
}
else:
return {
"status": "not_found",
"message": f"Session '{session_id}' not found or already cleared",
"session_id": session_id
}
except Exception as e:
logger.error(f"Error clearing session {session_id}: {str(e)}", exc_info=True)
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Error clearing session: {str(e)}"
)
@router.get("/sessions")
async def list_sessions():
"""
List all active chat sessions.
Returns:
List of active session IDs
"""
try:
sessions = get_active_sessions()
return {
"status": "success",
"active_sessions": sessions,
"count": len(sessions)
}
except Exception as e:
logger.error(f"Error listing sessions: {str(e)}", exc_info=True)
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Error listing sessions: {str(e)}"
)