Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import cv2
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from tensorflow.keras.utils import img_to_array
|
| 5 |
+
from tensorflow.keras.models import load_model
|
| 6 |
+
import os
|
| 7 |
+
# Load your pre-trained model
|
| 8 |
+
model = load_model(r"plant_leaf_diseases_model.h5")
|
| 9 |
+
|
| 10 |
+
classes = ['Pepper_bell_Bacterial_spot',
|
| 11 |
+
'Pepper_bell_healthy',
|
| 12 |
+
'Potato_Early_blight',
|
| 13 |
+
'Potato_Late_blight',
|
| 14 |
+
'Potato_healthy',
|
| 15 |
+
'Tomato_Bacterial_spot',
|
| 16 |
+
'Tomato_Early_blight',
|
| 17 |
+
'Tomato_Late_blight',
|
| 18 |
+
'Tomato_Leaf_Mold',
|
| 19 |
+
'Tomato_Septoria_leaf_spot',
|
| 20 |
+
'Tomato_Spider_mites_Two_spotted_spider_mite',
|
| 21 |
+
'Tomato_Target_Spot',
|
| 22 |
+
'Tomato_Tomato_YellowLeaf_Curl_Virus',
|
| 23 |
+
'Tomato_Tomato_mosaic_virus',
|
| 24 |
+
'Tomato_healthy']
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# Define the prediction function that takes an image as input and returns the predicted label
|
| 28 |
+
def predict_image(img):
|
| 29 |
+
|
| 30 |
+
x = img_to_array(img)
|
| 31 |
+
x = cv2.resize(x, (256, 256), interpolation=cv2.INTER_AREA)
|
| 32 |
+
x /= 255
|
| 33 |
+
x = np.expand_dims(x, axis=0)
|
| 34 |
+
image = np.vstack([x])
|
| 35 |
+
prediction = model.predict(image)[0] # Get the predictions for the first (and only) image
|
| 36 |
+
class_probabilities = {class_name: prob for class_name, prob in zip(classes, prediction)}
|
| 37 |
+
formatted_class_probabilities = {class_name: "{:.2f}".format(prob) for class_name, prob in class_probabilities.items()}
|
| 38 |
+
return formatted_class_probabilities
|
| 39 |
+
|
| 40 |
+
# Define the Gradio Interface with the desired title and description
|
| 41 |
+
description_html = """
|
| 42 |
+
<p>This model was trained by Moaz Eldsouky You can find more about me here:</p>
|
| 43 |
+
<p>GitHub: <a href="https://github.com/MoazEldsouky">GitHub Profile</a></p>
|
| 44 |
+
<p>LinkedIn: <a href="https://www.linkedin.com/in/moaz-eldesouky-762288251/">LinkedIn Profile</a></p>
|
| 45 |
+
<p>Kaggle: <a href="https://www.kaggle.com/moazeldsokyx">Kaggle Profile</a></p>
|
| 46 |
+
<p>This model was trained to classify plant diseases using the Plant Villages dataset.</p>
|
| 47 |
+
<p>You can see how this model was trained on the following Kaggle Notebook:</p>
|
| 48 |
+
<p><a href="https://www.kaggle.com/code/moazeldsokyx/plant-leaf-diseases-detection-using-cnn">Kaggle Notebook</a></p>
|
| 49 |
+
<p>Upload a photo to see how the model predicts!</p>
|
| 50 |
+
"""
|
| 51 |
+
|
| 52 |
+
# Define example images and their true labels for users to choose from
|
| 53 |
+
example_data = [
|
| 54 |
+
r"0a0dbf1f-1131-496f-b337-169ec6693e6f___NREC_B.Spot 9241.JPG",
|
| 55 |
+
r"0e69c47d-72c6-4fc6-9437-910c95b183dc___JR_HL 8113.JPG",
|
| 56 |
+
r"0c4f6f72-c7a2-42e1-9671-41ab3bf37fe7___RS_Early.B 6752.JPG",
|
| 57 |
+
r"1f9870b3-899e-46fb-98c9-cfc2ce92895b___RS_HL 1816.JPG",
|
| 58 |
+
r"3f0fd699-1ce7-437e-a899-662a51d59974___RS_LB 2904.JPG",
|
| 59 |
+
r"01b2013e-4030-4cd0-843c-2dbacf5f3758___Com.G_TgS_FL 8398.JPG",
|
| 60 |
+
r"0ce66ec5-0bb7-4fde-9c61-750a1a150f75___UF.GRC_YLCV_Lab 02219.JPG",
|
| 61 |
+
r"0afe3bbd-b18b-4c70-8fbd-072844e742a2___GCREC_Bact.Sp 3434.JPG",
|
| 62 |
+
r"0ba3d536-8732-4ea1-b3e1-a1be86e5dc6a___RS_Erly.B 9499.JPG",
|
| 63 |
+
r"2e96661f-a313-4deb-bf32-1eacbc10c48d___GH_HL Leaf 424.JPG"
|
| 64 |
+
|
| 65 |
+
# Add more example images and labels as needed
|
| 66 |
+
]
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
gr.Interface(
|
| 70 |
+
fn=predict_image,
|
| 71 |
+
inputs="image",
|
| 72 |
+
outputs=gr.Label(num_top_classes=15,min_width=360),
|
| 73 |
+
title="Plant Diseases Classification 🌱🦠",
|
| 74 |
+
description=description_html,
|
| 75 |
+
allow_flagging='never',
|
| 76 |
+
examples=example_data
|
| 77 |
+
).launch()
|