import numpy as np import cv2 import gradio as gr from tensorflow.keras.utils import img_to_array from tensorflow.keras.models import load_model import os # Load your pre-trained model model = load_model(r"plant_leaf_diseases_model.h5") classes = ['Pepper_bell_Bacterial_spot', 'Pepper_bell_healthy', 'Potato_Early_blight', 'Potato_Late_blight', 'Potato_healthy', 'Tomato_Bacterial_spot', 'Tomato_Early_blight', 'Tomato_Late_blight', 'Tomato_Leaf_Mold', 'Tomato_Septoria_leaf_spot', 'Tomato_Spider_mites_Two_spotted_spider_mite', 'Tomato_Target_Spot', 'Tomato_Tomato_YellowLeaf_Curl_Virus', 'Tomato_Tomato_mosaic_virus', 'Tomato_healthy'] # Define the prediction function that takes an image as input and returns the predicted label def predict_image(img): x = img_to_array(img) x = cv2.resize(x, (256, 256), interpolation=cv2.INTER_AREA) x /= 255 x = np.expand_dims(x, axis=0) image = np.vstack([x]) prediction = model.predict(image)[0] # Get the predictions for the first (and only) image class_probabilities = {class_name: prob for class_name, prob in zip(classes, prediction)} formatted_class_probabilities = {class_name: "{:.2f}".format(prob) for class_name, prob in class_probabilities.items()} return formatted_class_probabilities # Define the Gradio Interface with the desired title and description description_html = """
This model was trained by Moaz Eldsouky. You can find more about me here:
GitHub: GitHub Profile
LinkedIn: LinkedIn Profile
Kaggle: Kaggle Profile
This model was trained to classify plant diseases using the Plant Villages dataset.
You can see how this model was trained on the following Kaggle Notebook:
The model achieved an accuracy of 96% on the test set.
Upload a photo to see how the model predicts!
""" # Define example images and their true labels for users to choose from example_data = [ r"0a0dbf1f-1131-496f-b337-169ec6693e6f___NREC_B.Spot 9241.JPG", r"0e69c47d-72c6-4fc6-9437-910c95b183dc___JR_HL 8113.JPG", r"0c4f6f72-c7a2-42e1-9671-41ab3bf37fe7___RS_Early.B 6752.JPG", r"1f9870b3-899e-46fb-98c9-cfc2ce92895b___RS_HL 1816.JPG", r"3f0fd699-1ce7-437e-a899-662a51d59974___RS_LB 2904.JPG", r"01b2013e-4030-4cd0-843c-2dbacf5f3758___Com.G_TgS_FL 8398.JPG", r"0ce66ec5-0bb7-4fde-9c61-750a1a150f75___UF.GRC_YLCV_Lab 02219.JPG", r"0afe3bbd-b18b-4c70-8fbd-072844e742a2___GCREC_Bact.Sp 3434.JPG", r"0ba3d536-8732-4ea1-b3e1-a1be86e5dc6a___RS_Erly.B 9499.JPG", r"2e96661f-a313-4deb-bf32-1eacbc10c48d___GH_HL Leaf 424.JPG" # Add more example images and labels as needed ] gr.Interface( fn=predict_image, inputs="image", outputs=gr.Label(num_top_classes=15,min_width=360), title="Plant Diseases Classification 🌱🦠", description=description_html, allow_flagging='never', examples=example_data ).launch()