File size: 1,900 Bytes
f479293
 
 
 
 
 
 
 
 
 
 
 
 
e5e0eff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
---
title: DataSynthis ML JobTask
emoji: 🐒
colorFrom: green
colorTo: gray
sdk: gradio
sdk_version: 5.48.0
app_file: app.py
pinned: false
license: apache-2.0
short_description: Stock price forecasting ML demo for DataSynthis internship
---

# πŸ“ˆ DataSynthis ML JobTask  
Stock Price Forecasting with Baseline, Statistical, and ML Models  

## πŸš€ Project Overview  
This project demonstrates a complete **time-series forecasting pipeline** using daily stock price data (2010–2024). It was developed as part of the **DataSynthis ML Internship Task**.  

We cover the full workflow:  
1. **Baseline Models** β†’ NaΓ―ve Forecast, Simple Exponential Smoothing (SES)  
2. **Statistical Model** β†’ ARIMA  
3. **ML / DL Models** β†’ Prophet, LSTM  
4. **Evaluation** β†’ Rolling-window accuracy metrics (RMSE, MAPE)  
5. **Deployment** β†’ Interactive demo with Gradio (via Hugging Face Spaces)  

## πŸ› οΈ Features  
- Data preprocessing & feature engineering (lags, volatility, RSI, MACD, Bollinger Bands, etc.)  
- Feature validation & pruning (correlation, VIF, outlier checks)  
- Unified comparison of models with a performance summary table  
- Visualizations: trends, normalized comparisons, total returns  
- Exportable datasets for reproducibility  

## πŸ“Š Deliverables  
- **Notebook**: End-to-end workflow (data β†’ models β†’ evaluation)  
- **Models**: NaΓ―ve, SES, ARIMA, Prophet, LSTM  
- **Visualizations**: stock trends, indicators, correlations, performance plots  
- **Deployment**: Hugging Face Space with Gradio app  

## πŸ“‚ Repository Structure  
πŸ“ DataSynthis_ML_JobTask
β”œβ”€β”€ app.py # Gradio demo app
β”œβ”€β”€ data/ # Preprocessed & engineered datasets
β”œβ”€β”€ notebooks/ # Jupyter notebooks with full pipeline
β”œβ”€β”€ models/ # Trained ARIMA / Prophet / LSTM models
β”œβ”€β”€ outputs/ # Plots, summary tables, feature files
β”œβ”€β”€ README.md # This file