Spaces:
Sleeping
Sleeping
File size: 1,900 Bytes
f479293 e5e0eff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
title: DataSynthis ML JobTask
emoji: π’
colorFrom: green
colorTo: gray
sdk: gradio
sdk_version: 5.48.0
app_file: app.py
pinned: false
license: apache-2.0
short_description: Stock price forecasting ML demo for DataSynthis internship
---
# π DataSynthis ML JobTask
Stock Price Forecasting with Baseline, Statistical, and ML Models
## π Project Overview
This project demonstrates a complete **time-series forecasting pipeline** using daily stock price data (2010β2024). It was developed as part of the **DataSynthis ML Internship Task**.
We cover the full workflow:
1. **Baseline Models** β NaΓ―ve Forecast, Simple Exponential Smoothing (SES)
2. **Statistical Model** β ARIMA
3. **ML / DL Models** β Prophet, LSTM
4. **Evaluation** β Rolling-window accuracy metrics (RMSE, MAPE)
5. **Deployment** β Interactive demo with Gradio (via Hugging Face Spaces)
## π οΈ Features
- Data preprocessing & feature engineering (lags, volatility, RSI, MACD, Bollinger Bands, etc.)
- Feature validation & pruning (correlation, VIF, outlier checks)
- Unified comparison of models with a performance summary table
- Visualizations: trends, normalized comparisons, total returns
- Exportable datasets for reproducibility
## π Deliverables
- **Notebook**: End-to-end workflow (data β models β evaluation)
- **Models**: NaΓ―ve, SES, ARIMA, Prophet, LSTM
- **Visualizations**: stock trends, indicators, correlations, performance plots
- **Deployment**: Hugging Face Space with Gradio app
## π Repository Structure
π DataSynthis_ML_JobTask
βββ app.py # Gradio demo app
βββ data/ # Preprocessed & engineered datasets
βββ notebooks/ # Jupyter notebooks with full pipeline
βββ models/ # Trained ARIMA / Prophet / LSTM models
βββ outputs/ # Plots, summary tables, feature files
βββ README.md # This file |