3v324v23 commited on
Commit
7d568cf
·
1 Parent(s): f00acb2

Initial commit: add Gradio app and requirements

Browse files
Files changed (2) hide show
  1. app.py +18 -10
  2. requirements.txt +2 -3
app.py CHANGED
@@ -1,22 +1,24 @@
 
 
 
 
 
 
 
1
  import os
2
  import shutil
3
  import zipfile
4
- import pathlib
5
- import tempfile
6
- import gradio as gr
7
- import pandas as pd
8
- import numpy as np
9
- import PIL.Image
10
  import huggingface_hub as h
 
11
  import autogluon.multimodal
12
 
13
  model_repo_id = "nadakandrew/sign-identification-autogluon"
14
- zip_filename = "autogluon_image_predictor_dir.zip"
15
  HF_TOKEN = os.getenv("HF_TOKEN", None)
16
- cache_dir = pathlib.Path("hf_assets")
17
  extract_dir = cache_dir / "predictor_native"
18
 
19
- def prepare_predictor_dir():
20
  cache_dir.mkdir(parents=True, exist_ok=True)
21
  local_zip = h.hf_hub_download(
22
  repo_id=model_repo_id,
@@ -38,7 +40,7 @@ def prepare_predictor_dir():
38
  predictor_dir = prepare_predictor_dir()
39
  predictor = autogluon.multimodal.MultiModalPredictor.load(predictor_dir)
40
 
41
- def do_predict(pil_img, preprocess=True):
42
  if pil_img is None:
43
  return "No image provided.", None, None
44
 
@@ -56,8 +58,11 @@ def do_predict(pil_img, preprocess=True):
56
  img_path = tmpdir / "input.png"
57
  pil_img.save(img_path)
58
 
 
59
  df = pd.DataFrame({"image": [str(img_path)]})
 
60
  proba_df = predictor.predict_proba(df)
 
61
  proba_df = proba_df.rename(columns={0: "class_0", 1: "class_1"})
62
  row = proba_df.iloc[0]
63
 
@@ -68,6 +73,7 @@ def do_predict(pil_img, preprocess=True):
68
 
69
  return pretty_dict, original_img, preprocessed_img
70
 
 
71
  EXAMPLES = [
72
  ["https://universalsigns.com/wp-content/uploads/2022/08/StopSign-3.jpg"],
73
  ["https://images.roadtrafficsigns.com/img/pla/K/student-drop-off-area-sign-k-2459_pl.png"],
@@ -75,6 +81,7 @@ EXAMPLES = [
75
  ]
76
 
77
  with gr.Blocks() as demo:
 
78
  gr.Markdown("# Is this a STOP sign or not?")
79
  gr.Markdown("Upload a photo to see results.")
80
 
@@ -105,3 +112,4 @@ with gr.Blocks() as demo:
105
 
106
  if __name__ == "__main__":
107
  demo.launch()
 
 
1
+
2
+ import gradio as gr
3
+ import PIL.Image
4
+ import numpy as np
5
+ import pandas as pd
6
+ import pathlib
7
+ import tempfile
8
  import os
9
  import shutil
10
  import zipfile
 
 
 
 
 
 
11
  import huggingface_hub as h
12
+ from huggingface_hub import HfApi, Repository
13
  import autogluon.multimodal
14
 
15
  model_repo_id = "nadakandrew/sign-identification-autogluon"
16
+ zip_filename = "autogluon_image_predictor_dir.zip"
17
  HF_TOKEN = os.getenv("HF_TOKEN", None)
18
+ cache_dir = pathlib.Path("hf_assets")
19
  extract_dir = cache_dir / "predictor_native"
20
 
21
+ def prepare_predictor_dir() -> str:
22
  cache_dir.mkdir(parents=True, exist_ok=True)
23
  local_zip = h.hf_hub_download(
24
  repo_id=model_repo_id,
 
40
  predictor_dir = prepare_predictor_dir()
41
  predictor = autogluon.multimodal.MultiModalPredictor.load(predictor_dir)
42
 
43
+ def do_predict(pil_img: PIL.Image.Image, preprocess: bool = True):
44
  if pil_img is None:
45
  return "No image provided.", None, None
46
 
 
58
  img_path = tmpdir / "input.png"
59
  pil_img.save(img_path)
60
 
61
+
62
  df = pd.DataFrame({"image": [str(img_path)]})
63
+
64
  proba_df = predictor.predict_proba(df)
65
+
66
  proba_df = proba_df.rename(columns={0: "class_0", 1: "class_1"})
67
  row = proba_df.iloc[0]
68
 
 
73
 
74
  return pretty_dict, original_img, preprocessed_img
75
 
76
+
77
  EXAMPLES = [
78
  ["https://universalsigns.com/wp-content/uploads/2022/08/StopSign-3.jpg"],
79
  ["https://images.roadtrafficsigns.com/img/pla/K/student-drop-off-area-sign-k-2459_pl.png"],
 
81
  ]
82
 
83
  with gr.Blocks() as demo:
84
+
85
  gr.Markdown("# Is this a STOP sign or not?")
86
  gr.Markdown("Upload a photo to see results.")
87
 
 
112
 
113
  if __name__ == "__main__":
114
  demo.launch()
115
+
requirements.txt CHANGED
@@ -1,6 +1,5 @@
 
 
1
  gradio
2
- pandas
3
- numpy
4
  pillow
5
- autogluon.multimodal
6
  huggingface_hub
 
1
+
2
+ autogluon.multimodal
3
  gradio
 
 
4
  pillow
 
5
  huggingface_hub