Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import shutil
|
| 3 |
+
import zipfile
|
| 4 |
+
import pathlib
|
| 5 |
+
import tempfile
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import numpy as np
|
| 9 |
+
import PIL.Image
|
| 10 |
+
import huggingface_hub as h
|
| 11 |
+
import autogluon.multimodal
|
| 12 |
+
|
| 13 |
+
model_repo_id = "nadakandrew/sign-identification-autogluon"
|
| 14 |
+
zip_filename = "autogluon_image_predictor_dir.zip"
|
| 15 |
+
HF_TOKEN = os.getenv("HF_TOKEN", None)
|
| 16 |
+
cache_dir = pathlib.Path("hf_assets")
|
| 17 |
+
extract_dir = cache_dir / "predictor_native"
|
| 18 |
+
|
| 19 |
+
def prepare_predictor_dir():
|
| 20 |
+
cache_dir.mkdir(parents=True, exist_ok=True)
|
| 21 |
+
local_zip = h.hf_hub_download(
|
| 22 |
+
repo_id=model_repo_id,
|
| 23 |
+
filename=zip_filename,
|
| 24 |
+
repo_type="model",
|
| 25 |
+
token=HF_TOKEN,
|
| 26 |
+
local_dir=str(cache_dir),
|
| 27 |
+
local_dir_use_symlinks=False,
|
| 28 |
+
)
|
| 29 |
+
if extract_dir.exists():
|
| 30 |
+
shutil.rmtree(extract_dir)
|
| 31 |
+
extract_dir.mkdir(parents=True, exist_ok=True)
|
| 32 |
+
with zipfile.ZipFile(local_zip, "r") as zf:
|
| 33 |
+
zf.extractall(str(extract_dir))
|
| 34 |
+
contents = list(extract_dir.iterdir())
|
| 35 |
+
predictor_root = contents[0] if (len(contents) == 1 and contents[0].is_dir()) else extract_dir
|
| 36 |
+
return str(predictor_root)
|
| 37 |
+
|
| 38 |
+
predictor_dir = prepare_predictor_dir()
|
| 39 |
+
predictor = autogluon.multimodal.MultiModalPredictor.load(predictor_dir)
|
| 40 |
+
|
| 41 |
+
def do_predict(pil_img, preprocess=True):
|
| 42 |
+
if pil_img is None:
|
| 43 |
+
return "No image provided.", None, None
|
| 44 |
+
|
| 45 |
+
original_img = pil_img.copy()
|
| 46 |
+
preprocessed_img = None
|
| 47 |
+
|
| 48 |
+
if preprocess:
|
| 49 |
+
target_size = (224, 224)
|
| 50 |
+
preprocessed_img = pil_img.resize(target_size).convert("RGB")
|
| 51 |
+
tmpdir = pathlib.Path(tempfile.mkdtemp())
|
| 52 |
+
img_path = tmpdir / "input.png"
|
| 53 |
+
preprocessed_img.save(img_path)
|
| 54 |
+
else:
|
| 55 |
+
tmpdir = pathlib.Path(tempfile.mkdtemp())
|
| 56 |
+
img_path = tmpdir / "input.png"
|
| 57 |
+
pil_img.save(img_path)
|
| 58 |
+
|
| 59 |
+
df = pd.DataFrame({"image": [str(img_path)]})
|
| 60 |
+
proba_df = predictor.predict_proba(df)
|
| 61 |
+
proba_df = proba_df.rename(columns={0: "class_0", 1: "class_1"})
|
| 62 |
+
row = proba_df.iloc[0]
|
| 63 |
+
|
| 64 |
+
pretty_dict = {
|
| 65 |
+
"Not a STOP sign": float(row.get("class_0", 0.0)),
|
| 66 |
+
"STOP sign": float(row.get("class_1", 0.0)),
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
return pretty_dict, original_img, preprocessed_img
|
| 70 |
+
|
| 71 |
+
EXAMPLES = [
|
| 72 |
+
["https://universalsigns.com/wp-content/uploads/2022/08/StopSign-3.jpg"],
|
| 73 |
+
["https://images.roadtrafficsigns.com/img/pla/K/student-drop-off-area-sign-k-2459_pl.png"],
|
| 74 |
+
["https://hansonsign.com/wp-content/uploads/2024/05/donatos-662x646.jpg"]
|
| 75 |
+
]
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
with gr.Blocks() as demo:
|
| 79 |
+
gr.Markdown("# Is this a STOP sign or not?")
|
| 80 |
+
gr.Markdown("Upload a photo to see results.")
|
| 81 |
+
|
| 82 |
+
with gr.Row():
|
| 83 |
+
image_in = gr.Image(type="pil", label="Input image", sources=["upload", "webcam"])
|
| 84 |
+
original_img_out = gr.Image(type="pil", label="Original image")
|
| 85 |
+
preprocessed_img_out = gr.Image(type="pil", label="Preprocessed image")
|
| 86 |
+
|
| 87 |
+
with gr.Row():
|
| 88 |
+
preprocess_checkbox = gr.Checkbox(label="Apply Preprocessing", value=True)
|
| 89 |
+
|
| 90 |
+
proba_pretty = gr.Label(num_top_classes=2, label="Class probabilities")
|
| 91 |
+
|
| 92 |
+
image_in.change(
|
| 93 |
+
fn=do_predict,
|
| 94 |
+
inputs=[image_in, preprocess_checkbox],
|
| 95 |
+
outputs=[proba_pretty, original_img_out, preprocessed_img_out]
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
gr.Examples(
|
| 99 |
+
examples=EXAMPLES,
|
| 100 |
+
inputs=[image_in],
|
| 101 |
+
label="Choose any one",
|
| 102 |
+
examples_per_page=8,
|
| 103 |
+
cache_examples=False,
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
if __name__ == "__main__":
|
| 108 |
+
demo.launch()
|