Upload 3 files
Browse files- dog.jpg +0 -0
- mujtaba_object_detection_code_export.py +132 -0
- plane.jpg +0 -0
dog.jpg
ADDED
|
mujtaba_object_detection_code_export.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""mujtaba_object_detection_code_export.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1RgE9mbEiNBuPutxI86fIewscERKHyOr_
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
!pip install ultralytics datasets wandb gradio opencv-python Pillow captum torchvision --upgrade
|
| 11 |
+
|
| 12 |
+
import os
|
| 13 |
+
import cv2
|
| 14 |
+
import torch
|
| 15 |
+
import numpy as np
|
| 16 |
+
from ultralytics import YOLO
|
| 17 |
+
import wandb
|
| 18 |
+
import matplotlib.pyplot as plt
|
| 19 |
+
from datetime import datetime
|
| 20 |
+
from google.colab import userdata
|
| 21 |
+
|
| 22 |
+
wandb.login(key=userdata.get('WANDB'))
|
| 23 |
+
|
| 24 |
+
def setup_wandb():
|
| 25 |
+
wandb.init(project="Object-detection",
|
| 26 |
+
name=f"run_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
|
| 27 |
+
config={
|
| 28 |
+
"model": "yolov8n",
|
| 29 |
+
"dataset": "coco128",
|
| 30 |
+
"img_size": 640,
|
| 31 |
+
"batch_size": 8
|
| 32 |
+
})
|
| 33 |
+
|
| 34 |
+
def load_model():
|
| 35 |
+
model = YOLO("yolov8n.pt")
|
| 36 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 37 |
+
model.to(device)
|
| 38 |
+
return model
|
| 39 |
+
|
| 40 |
+
def train_model(model):
|
| 41 |
+
results = model.train(
|
| 42 |
+
data="coco128.yaml",
|
| 43 |
+
epochs=20,
|
| 44 |
+
imgsz=640,
|
| 45 |
+
batch=8,
|
| 46 |
+
device='0' if torch.cuda.is_available() else 'cpu',
|
| 47 |
+
patience=3,
|
| 48 |
+
save=True
|
| 49 |
+
)
|
| 50 |
+
return model
|
| 51 |
+
|
| 52 |
+
def validate_model(model):
|
| 53 |
+
metrics = model.val()
|
| 54 |
+
wandb.log({
|
| 55 |
+
"val/mAP50": metrics.box.map50,
|
| 56 |
+
"val/mAP50-95": metrics.box.map,
|
| 57 |
+
"val/precision": metrics.box.mp,
|
| 58 |
+
"val/recall": metrics.box.mr
|
| 59 |
+
})
|
| 60 |
+
return metrics
|
| 61 |
+
|
| 62 |
+
def visualize_results(results, img_path):
|
| 63 |
+
img = cv2.imread(img_path)
|
| 64 |
+
if img is None:
|
| 65 |
+
raise ValueError(f"Failed to load image: {img_path}")
|
| 66 |
+
pred_img = results[0].plot()
|
| 67 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10))
|
| 68 |
+
ax1.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
| 69 |
+
ax1.axis('off')
|
| 70 |
+
ax2.imshow(cv2.cvtColor(pred_img, cv2.COLOR_BGR2RGB))
|
| 71 |
+
ax2.axis('off')
|
| 72 |
+
plt.savefig("detection_results.jpg")
|
| 73 |
+
plt.close()
|
| 74 |
+
return "detection_results.jpg"
|
| 75 |
+
|
| 76 |
+
def test_image(model, img_path="test_image.jpg"):
|
| 77 |
+
if not os.path.exists(img_path):
|
| 78 |
+
raise FileNotFoundError(f"Image not found: {img_path}")
|
| 79 |
+
results = model(img_path)
|
| 80 |
+
output_path = visualize_results(results, img_path)
|
| 81 |
+
wandb.log({
|
| 82 |
+
"test_results": wandb.Image(output_path),
|
| 83 |
+
"detections": results[0].boxes.cls.tolist(),
|
| 84 |
+
"confidences": results[0].boxes.conf.tolist()
|
| 85 |
+
})
|
| 86 |
+
return results
|
| 87 |
+
|
| 88 |
+
def webcam_demo(model):
|
| 89 |
+
try:
|
| 90 |
+
from google.colab.patches import cv2_imshow
|
| 91 |
+
cap = cv2.VideoCapture(0)
|
| 92 |
+
if not cap.isOpened():
|
| 93 |
+
print("Webcam not available - skipping demo")
|
| 94 |
+
return
|
| 95 |
+
print("Press 'q' to quit webcam demo")
|
| 96 |
+
while True:
|
| 97 |
+
ret, frame = cap.read()
|
| 98 |
+
if not ret:
|
| 99 |
+
break
|
| 100 |
+
results = model(frame)
|
| 101 |
+
annotated = results[0].plot()
|
| 102 |
+
cv2_imshow(annotated)
|
| 103 |
+
if cv2.waitKey(1) & 0xFF == ord('q'):
|
| 104 |
+
break
|
| 105 |
+
except Exception as e:
|
| 106 |
+
print(f"Webcam error: {e}")
|
| 107 |
+
finally:
|
| 108 |
+
cap.release()
|
| 109 |
+
cv2.destroyAllWindows()
|
| 110 |
+
|
| 111 |
+
def export_model():
|
| 112 |
+
trained_weights = "runs/detect/train/weights/best.pt"
|
| 113 |
+
model = YOLO(trained_weights)
|
| 114 |
+
model.export(format="torchscript")
|
| 115 |
+
wandb.save("best.torchscript")
|
| 116 |
+
|
| 117 |
+
def main():
|
| 118 |
+
setup_wandb()
|
| 119 |
+
model = load_model()
|
| 120 |
+
model = train_model(model)
|
| 121 |
+
validate_model(model)
|
| 122 |
+
test_image(model)
|
| 123 |
+
export_model()
|
| 124 |
+
wandb.finish()
|
| 125 |
+
|
| 126 |
+
if __name__ == "__main__":
|
| 127 |
+
main()
|
| 128 |
+
|
| 129 |
+
from google.colab import files
|
| 130 |
+
|
| 131 |
+
files.download("runs/detect/train/weights/best.torchscript")
|
| 132 |
+
|
plane.jpg
ADDED
|