File size: 14,206 Bytes
8eb4303
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import os
import copy
import numpy as np
import tqdm
import mediapipe as mp
import torch
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
from utils.commons.multiprocess_utils import multiprocess_run_tqdm, multiprocess_run
from utils.commons.tensor_utils import convert_to_np
from sklearn.neighbors import NearestNeighbors

def scatter_np(condition_img, classSeg=5):
# def scatter(condition_img, classSeg=19, label_size=(512, 512)):
    batch, c, height, width = condition_img.shape
    # if height != label_size[0] or width != label_size[1]:
        # condition_img= F.interpolate(condition_img, size=label_size, mode='nearest')
    input_label = np.zeros([batch, classSeg, condition_img.shape[2], condition_img.shape[3]]).astype(np.int_)
    # input_label = torch.zeros(batch, classSeg, *label_size, device=condition_img.device)
    np.put_along_axis(input_label, condition_img, 1, 1)
    return input_label

def scatter(condition_img, classSeg=19):
# def scatter(condition_img, classSeg=19, label_size=(512, 512)):
    batch, c, height, width = condition_img.size()
    # if height != label_size[0] or width != label_size[1]:
        # condition_img= F.interpolate(condition_img, size=label_size, mode='nearest')
    input_label = torch.zeros(batch, classSeg, condition_img.shape[2], condition_img.shape[3], device=condition_img.device)
    # input_label = torch.zeros(batch, classSeg, *label_size, device=condition_img.device)
    return input_label.scatter_(1, condition_img.long(), 1)

def encode_segmap_mask_to_image(segmap):
    # rgb
    _,h,w = segmap.shape
    encoded_img = np.ones([h,w,3],dtype=np.uint8) * 255
    colors = [(255,255,255),(255,255,0),(255,0,255),(0,255,255),(255,0,0),(0,255,0)]
    for i, color in enumerate(colors):
        mask = segmap[i].astype(int)
        index = np.where(mask != 0)
        encoded_img[index[0], index[1], :] = np.array(color)
    return encoded_img.astype(np.uint8)
        
def decode_segmap_mask_from_image(encoded_img):
    # rgb
    colors = [(255,255,255),(255,255,0),(255,0,255),(0,255,255),(255,0,0),(0,255,0)]
    bg = (encoded_img[..., 0] == 255) & (encoded_img[..., 1] == 255) & (encoded_img[..., 2] == 255)
    hair = (encoded_img[..., 0] == 255) & (encoded_img[..., 1] == 255) & (encoded_img[..., 2] == 0)
    body_skin = (encoded_img[..., 0] == 255) & (encoded_img[..., 1] == 0) & (encoded_img[..., 2] == 255)
    face_skin = (encoded_img[..., 0] == 0) & (encoded_img[..., 1] == 255) & (encoded_img[..., 2] == 255)
    clothes = (encoded_img[..., 0] == 255) & (encoded_img[..., 1] == 0) & (encoded_img[..., 2] == 0)
    others = (encoded_img[..., 0] == 0) & (encoded_img[..., 1] == 255) & (encoded_img[..., 2] == 0)
    segmap = np.stack([bg, hair, body_skin, face_skin, clothes, others], axis=0)
    return segmap.astype(np.uint8)

def read_video_frame(video_name, frame_id):
    # https://blog.csdn.net/bby1987/article/details/108923361
    # frame_num = video_capture.get(cv2.CAP_PROP_FRAME_COUNT) # ==> 总帧数
    # fps = video_capture.get(cv2.CAP_PROP_FPS)               # ==> 帧率
    # width = video_capture.get(cv2.CAP_PROP_FRAME_WIDTH)     # ==> 视频宽度
    # height = video_capture.get(cv2.CAP_PROP_FRAME_HEIGHT)   # ==> 视频高度
    # pos = video_capture.get(cv2.CAP_PROP_POS_FRAMES)        # ==> 句柄位置
    # video_capture.set(cv2.CAP_PROP_POS_FRAMES, 1000)        # ==> 设置句柄位置
    # pos = video_capture.get(cv2.CAP_PROP_POS_FRAMES)        # ==> 此时 pos = 1000.0
    # video_capture.release()
    vr = cv2.VideoCapture(video_name)
    vr.set(cv2.CAP_PROP_POS_FRAMES, frame_id)
    _, frame = vr.read()
    return frame

def decode_segmap_mask_from_segmap_video_frame(video_frame):
    # video_frame: 0~255 BGR, obtained by read_video_frame
    def assign_values(array):
        remainder = array % 40  # 计算数组中每个值与40的余数
        assigned_values = np.where(remainder <= 20, array - remainder, array + (40 - remainder))
        return assigned_values
    segmap = video_frame.mean(-1)
    segmap = assign_values(segmap) // 40 # [H, W] with value 0~5 
    segmap_mask = scatter_np(segmap[None, None, ...], classSeg=6)[0] # [6, H, W]
    return segmap.astype(np.uint8)

def extract_background(img_lst, segmap_lst=None):
    """
    img_lst: list of rgb ndarray
    """
    # only use 1/20 images
    num_frames = len(img_lst)
    img_lst = img_lst[::20] if num_frames > 20 else img_lst[0:1]
        
    if segmap_lst is not None:
        segmap_lst = segmap_lst[::20] if num_frames > 20 else segmap_lst[0:1]
        assert len(img_lst) == len(segmap_lst)
    # get H/W
    h, w = img_lst[0].shape[:2]

    # nearest neighbors
    all_xys = np.mgrid[0:h, 0:w].reshape(2, -1).transpose()
    distss = []
    for idx, img in enumerate(img_lst):
        if segmap_lst is not None:
            segmap = segmap_lst[idx]
        else:
            segmap = seg_model._cal_seg_map(img)
        bg = (segmap[0]).astype(bool)
        fg_xys = np.stack(np.nonzero(~bg)).transpose(1, 0)
        nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(fg_xys)
        dists, _ = nbrs.kneighbors(all_xys)
        distss.append(dists)

    distss = np.stack(distss)
    max_dist = np.max(distss, 0)
    max_id = np.argmax(distss, 0)

    bc_pixs = max_dist > 10 # 5
    bc_pixs_id = np.nonzero(bc_pixs)
    bc_ids = max_id[bc_pixs]

    num_pixs = distss.shape[1]
    imgs = np.stack(img_lst).reshape(-1, num_pixs, 3)

    bg_img = np.zeros((h*w, 3), dtype=np.uint8)
    bg_img[bc_pixs_id, :] = imgs[bc_ids, bc_pixs_id, :]
    bg_img = bg_img.reshape(h, w, 3)

    max_dist = max_dist.reshape(h, w)
    bc_pixs = max_dist > 10 # 5
    bg_xys = np.stack(np.nonzero(~bc_pixs)).transpose()
    fg_xys = np.stack(np.nonzero(bc_pixs)).transpose()
    nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(fg_xys)
    distances, indices = nbrs.kneighbors(bg_xys)
    bg_fg_xys = fg_xys[indices[:, 0]]
    bg_img[bg_xys[:, 0], bg_xys[:, 1], :] = bg_img[bg_fg_xys[:, 0], bg_fg_xys[:, 1], :]
    return bg_img


global_segmenter = None
def job_cal_seg_map_for_image(img, segmenter_options=None, segmenter=None):
    """
    被 MediapipeSegmenter.multiprocess_cal_seg_map_for_a_video所使用, 专门用来处理单个长视频.
    """
    global global_segmenter
    if segmenter is not None:
        segmenter_actual = segmenter
    else:
        global_segmenter = vision.ImageSegmenter.create_from_options(segmenter_options) if global_segmenter is None else global_segmenter
        segmenter_actual = global_segmenter
    mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=img)
    out = segmenter_actual.segment(mp_image)
    segmap = out.category_mask.numpy_view().copy() # [H, W]

    segmap_mask = scatter_np(segmap[None, None, ...], classSeg=6)[0] # [6, H, W]
    segmap_image = segmap[:, :, None].repeat(3, 2).astype(float)
    segmap_image = (segmap_image * 40).astype(np.uint8)

    return segmap_mask, segmap_image

class MediapipeSegmenter:
    def __init__(self):
        model_path = 'data_gen/utils/mp_feature_extractors/selfie_multiclass_256x256.tflite'
        if not os.path.exists(model_path):
            os.makedirs(os.path.dirname(model_path), exist_ok=True)
            print("downloading segmenter model from mediapipe...")
            os.system(f"wget https://storage.googleapis.com/mediapipe-models/image_segmenter/selfie_multiclass_256x256/float32/latest/selfie_multiclass_256x256.tflite")
            os.system(f"mv selfie_multiclass_256x256.tflite {model_path}")
            print("download success")
        base_options = python.BaseOptions(model_asset_path=model_path)
        self.options = vision.ImageSegmenterOptions(base_options=base_options,running_mode=vision.RunningMode.IMAGE, output_category_mask=True)
        self.video_options = vision.ImageSegmenterOptions(base_options=base_options,running_mode=vision.RunningMode.VIDEO, output_category_mask=True)
    
    def multiprocess_cal_seg_map_for_a_video(self, imgs, num_workers=4):
        """
        并行处理单个长视频
        imgs: list of rgb array in 0~255
        """
        segmap_masks = []
        segmap_images = []
        img_lst = [(self.options, imgs[i]) for i in range(len(imgs))]
        for (i, res) in multiprocess_run_tqdm(job_cal_seg_map_for_image, args=img_lst, num_workers=num_workers, desc='extracting from a video in multi-process'):
            segmap_mask, segmap_image = res
            segmap_masks.append(segmap_mask)
            segmap_images.append(segmap_image)
        return segmap_masks, segmap_images
        
    def _cal_seg_map_for_video(self, imgs, segmenter=None, return_onehot_mask=True, return_segmap_image=True):
        segmenter = vision.ImageSegmenter.create_from_options(self.video_options) if segmenter is None else segmenter
        assert return_onehot_mask or return_segmap_image # you should at least return one
        segmap_masks = []
        segmap_images = []
        for i in tqdm.trange(len(imgs), desc="extracting segmaps from a video..."):
            img = imgs[i]
            mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=img)
            out = segmenter.segment_for_video(mp_image, 40 * i)
            segmap = out.category_mask.numpy_view().copy() # [H, W]

            if return_onehot_mask:
                segmap_mask = scatter_np(segmap[None, None, ...], classSeg=6)[0] # [6, H, W]
                segmap_masks.append(segmap_mask)
            if return_segmap_image:
                segmap_image = segmap[:, :, None].repeat(3, 2).astype(float)
                segmap_image = (segmap_image * 40).astype(np.uint8)
                segmap_images.append(segmap_image)
        
        if return_onehot_mask and return_segmap_image:
            return segmap_masks, segmap_images
        elif return_onehot_mask:
            return segmap_masks
        elif return_segmap_image:
            return segmap_images
    
    def _cal_seg_map(self, img, segmenter=None, return_onehot_mask=True):
        """
        segmenter: vision.ImageSegmenter.create_from_options(options)
        img: numpy, [H, W, 3], 0~255
        segmap: [C, H, W]
        0 - background
        1 - hair
        2 - body-skin
        3 - face-skin
        4 - clothes
        5 - others (accessories)
        """
        assert img.ndim == 3
        segmenter = vision.ImageSegmenter.create_from_options(self.options) if segmenter is None else segmenter 
        image = mp.Image(image_format=mp.ImageFormat.SRGB, data=img)
        out = segmenter.segment(image) 
        segmap = out.category_mask.numpy_view().copy() # [H, W]
        if return_onehot_mask:
            segmap = scatter_np(segmap[None, None, ...], classSeg=6)[0] # [6, H, W]
        return segmap

    def _seg_out_img_with_segmap(self, img, segmap, mode='head'):
        """
        img: [h,w,c], img is in 0~255, np
        """
        # 
        img = copy.deepcopy(img)
        if mode == 'head':
            selected_mask = segmap[[1,3,5] , :, :].sum(axis=0)[None,:] > 0.5 # glasses 也属于others
            img[~selected_mask.repeat(3,axis=0).transpose(1,2,0)] = 0 # (-1,-1,-1) denotes black in our [-1,1] convention
            # selected_mask = segmap[[1,3] , :, :].sum(dim=0, keepdim=True) > 0.5
        elif mode == 'person':
            selected_mask = segmap[[1,2,3,4,5], :, :].sum(axis=0)[None,:] > 0.5 
            img[~selected_mask.repeat(3,axis=0).transpose(1,2,0)] = 0 # (-1,-1,-1) denotes black in our [-1,1] convention
        elif mode == 'torso':
            selected_mask = segmap[[2,4], :, :].sum(axis=0)[None,:] > 0.5
            img[~selected_mask.repeat(3,axis=0).transpose(1,2,0)] = 0 # (-1,-1,-1) denotes black in our [-1,1] convention
        elif mode == 'torso_with_bg':
            selected_mask = segmap[[0, 2,4], :, :].sum(axis=0)[None,:] > 0.5
            img[~selected_mask.repeat(3,axis=0).transpose(1,2,0)] = 0 # (-1,-1,-1) denotes black in our [-1,1] convention
        elif mode == 'bg':
            selected_mask = segmap[[0], :, :].sum(axis=0)[None,:] > 0.5  # only seg out 0, which means background
            img[~selected_mask.repeat(3,axis=0).transpose(1,2,0)] = 0 # (-1,-1,-1) denotes black in our [-1,1] convention
        elif mode == 'full':
            pass
        else:
            raise NotImplementedError()
        return img, selected_mask
    
    def _seg_out_img(self, img, segmenter=None, mode='head'):
        """
        imgs [H, W, 3] 0-255
        return : person_img [B, 3, H, W]
        """
        segmenter = vision.ImageSegmenter.create_from_options(self.options) if segmenter is None else segmenter 
        segmap = self._cal_seg_map(img, segmenter=segmenter, return_onehot_mask=True) # [B, 19, H, W]
        return self._seg_out_img_with_segmap(img, segmap, mode=mode)

    def seg_out_imgs(self, img, mode='head'):
        """
        api for pytorch img, -1~1
        img: [B, 3, H, W], -1~1
        """
        device = img.device
        img = convert_to_np(img.permute(0, 2, 3, 1)) # [B, H, W, 3]
        img = ((img + 1) * 127.5).astype(np.uint8)
        img_lst = [copy.deepcopy(img[i]) for i in range(len(img))]
        out_lst = []
        for im in img_lst:
            out = self._seg_out_img(im, mode=mode)
            out_lst.append(out)
        seg_imgs = np.stack(out_lst) # [B, H, W, 3]
        seg_imgs = (seg_imgs - 127.5) / 127.5
        seg_imgs = torch.from_numpy(seg_imgs).permute(0, 3, 1, 2).to(device)
        return seg_imgs

if __name__ == '__main__':
    import imageio, cv2, tqdm
    import torchshow as ts
    img = imageio.imread("1.png")
    img = cv2.resize(img, (512,512))

    seg_model = MediapipeSegmenter()
    img = torch.tensor(img).unsqueeze(0).repeat([1, 1, 1, 1]).permute(0, 3,1,2)
    img = (img-127.5)/127.5
    out = seg_model.seg_out_imgs(img, 'torso')
    ts.save(out,"torso.png")
    out = seg_model.seg_out_imgs(img, 'head')
    ts.save(out,"head.png")
    out = seg_model.seg_out_imgs(img, 'bg')
    ts.save(out,"bg.png")
    img = convert_to_np(img.permute(0, 2, 3, 1)) # [B, H, W, 3]
    img = ((img + 1) * 127.5).astype(np.uint8)
    bg = extract_background(img)
    ts.save(bg,"bg2.png")