Spaces:
Build error
Build error
| """This script is the data preparation script for Deep3DFaceRecon_pytorch | |
| """ | |
| import os | |
| import numpy as np | |
| import argparse | |
| from util.detect_lm68 import detect_68p,load_lm_graph | |
| from util.skin_mask import get_skin_mask | |
| from util.generate_list import check_list, write_list | |
| import warnings | |
| warnings.filterwarnings("ignore") | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--data_root', type=str, default='datasets', help='root directory for training data') | |
| parser.add_argument('--img_folder', nargs="+", required=True, help='folders of training images') | |
| parser.add_argument('--mode', type=str, default='train', help='train or val') | |
| opt = parser.parse_args() | |
| os.environ['CUDA_VISIBLE_DEVICES'] = '0' | |
| def data_prepare(folder_list,mode): | |
| lm_sess,input_op,output_op = load_lm_graph('./checkpoints/lm_model/68lm_detector.pb') # load a tensorflow version 68-landmark detector | |
| for img_folder in folder_list: | |
| detect_68p(img_folder,lm_sess,input_op,output_op) # detect landmarks for images | |
| get_skin_mask(img_folder) # generate skin attention mask for images | |
| # create files that record path to all training data | |
| msks_list = [] | |
| for img_folder in folder_list: | |
| path = os.path.join(img_folder, 'mask') | |
| msks_list += ['/'.join([img_folder, 'mask', i]) for i in sorted(os.listdir(path)) if 'jpg' in i or | |
| 'png' in i or 'jpeg' in i or 'PNG' in i] | |
| imgs_list = [i.replace('mask/', '') for i in msks_list] | |
| lms_list = [i.replace('mask', 'landmarks') for i in msks_list] | |
| lms_list = ['.'.join(i.split('.')[:-1]) + '.txt' for i in lms_list] | |
| lms_list_final, imgs_list_final, msks_list_final = check_list(lms_list, imgs_list, msks_list) # check if the path is valid | |
| write_list(lms_list_final, imgs_list_final, msks_list_final, mode=mode) # save files | |
| if __name__ == '__main__': | |
| print('Datasets:',opt.img_folder) | |
| data_prepare([os.path.join(opt.data_root,folder) for folder in opt.img_folder],opt.mode) | |