Spaces:
Build error
Build error
| import torch | |
| import torch.nn as nn | |
| import numpy as np | |
| from einops import rearrange | |
| from deep_3drecon.util.mesh_renderer import MeshRenderer | |
| from deep_3drecon.deep_3drecon_models.bfm import ParametricFaceModel | |
| class SECC_Renderer(nn.Module): | |
| def __init__(self, rasterize_size=None, device="cuda"): | |
| super().__init__() | |
| self.face_model = ParametricFaceModel('deep_3drecon/BFM') | |
| self.fov = 2 * np.arctan(self.face_model.center / self.face_model.focal) * 180 / np.pi | |
| self.znear = 5. | |
| self.zfar = 15. | |
| if rasterize_size is None: | |
| rasterize_size = 2*self.face_model.center | |
| self.face_renderer = MeshRenderer(rasterize_fov=self.fov, znear=self.znear, zfar=self.zfar, rasterize_size=rasterize_size, use_opengl=False).cuda() | |
| face_feat = np.load("deep_3drecon/ncc_code.npy", allow_pickle=True) | |
| self.face_feat = torch.tensor(face_feat.T).unsqueeze(0).to(device=device) | |
| del_index_re = np.load('deep_3drecon/bfm_right_eye_faces.npy') | |
| del_index_re = del_index_re - 1 | |
| del_index_le = np.load('deep_3drecon/bfm_left_eye_faces.npy') | |
| del_index_le = del_index_le - 1 | |
| face_buf_list = [] | |
| for i in range(self.face_model.face_buf.shape[0]): | |
| if i not in del_index_re and i not in del_index_le: | |
| face_buf_list.append(self.face_model.face_buf[i]) | |
| face_buf_arr = np.array(face_buf_list) | |
| self.face_buf = torch.tensor(face_buf_arr).to(device=device) | |
| def forward(self, id, exp, euler, trans): | |
| """ | |
| id, exp, euler, euler: [B, C] or [B, T, C] | |
| return: | |
| MASK: [B, 1, 512, 512], value[0. or 1.0], 1.0 denotes is face | |
| SECC MAP: [B, 3, 512, 512], value[0~1] | |
| if input is BTC format, return [B, C, T, H, W] | |
| """ | |
| bs = id.shape[0] | |
| is_btc_flag = id.ndim == 3 | |
| if is_btc_flag: | |
| t = id.shape[1] | |
| bs = bs * t | |
| id, exp, euler, trans = id.reshape([bs,-1]), exp.reshape([bs,-1]), euler.reshape([bs,-1]), trans.reshape([bs,-1]) | |
| face_vertex = self.face_model.compute_face_vertex(id, exp, euler, trans) | |
| face_mask, _, secc_face = self.face_renderer( | |
| face_vertex, self.face_buf.unsqueeze(0).repeat([bs, 1, 1]), feat=self.face_feat.repeat([bs,1,1])) | |
| secc_face = (secc_face - 0.5) / 0.5 # scale to -1~1 | |
| if is_btc_flag: | |
| bs = bs // t | |
| face_mask = rearrange(face_mask, "(n t) c h w -> n c t h w", n=bs, t=t) | |
| secc_face = rearrange(secc_face, "(n t) c h w -> n c t h w", n=bs, t=t) | |
| return face_mask, secc_face | |
| if __name__ == '__main__': | |
| import imageio | |
| renderer = SECC_Renderer(rasterize_size=512) | |
| ret = np.load("data/processed/videos/May/vid_coeff_fit.npy", allow_pickle=True).tolist() | |
| idx = 6 | |
| id = torch.tensor(ret['id']).cuda()[idx:idx+1] | |
| exp = torch.tensor(ret['exp']).cuda()[idx:idx+1] | |
| angle = torch.tensor(ret['euler']).cuda()[idx:idx+1] | |
| trans = torch.tensor(ret['trans']).cuda()[idx:idx+1] | |
| mask, secc = renderer(id, exp, angle*0, trans*0) # [1, 1, 512, 512], [1, 3, 512, 512] | |
| out_mask = mask[0].permute(1,2,0) | |
| out_mask = (out_mask * 127.5 + 127.5).int().cpu().numpy() | |
| imageio.imwrite("out_mask.png", out_mask) | |
| out_img = secc[0].permute(1,2,0) | |
| out_img = (out_img * 127.5 + 127.5).int().cpu().numpy() | |
| imageio.imwrite("out_secc.png", out_img) |