Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,9 +3,9 @@ import numpy as np
|
|
| 3 |
import random
|
| 4 |
import torch
|
| 5 |
import spaces
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
from PIL import Image
|
| 10 |
from diffusers import FlowMatchEulerDiscreteScheduler,DiffusionPipeline
|
| 11 |
from optimization import optimize_pipeline_
|
|
@@ -17,7 +17,7 @@ from huggingface_hub import InferenceClient
|
|
| 17 |
import math
|
| 18 |
from huggingface_hub import hf_hub_download
|
| 19 |
from safetensors.torch import load_file
|
| 20 |
-
|
| 21 |
from basicsr.archs.rrdbnet_arch import RRDBNet
|
| 22 |
from basicsr.utils.download_util import load_file_from_url
|
| 23 |
from realesrgan import RealESRGANer
|
|
@@ -37,6 +37,42 @@ import tempfile
|
|
| 37 |
from PIL import Image
|
| 38 |
import gradio as gr
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
# --- Upscaling ---
|
| 42 |
MAX_SEED = np.iinfo(np.int32).max
|
|
@@ -348,11 +384,17 @@ def infer(
|
|
| 348 |
true_cfg_scale=true_guidance_scale,
|
| 349 |
num_images_per_prompt=num_images_per_prompt,
|
| 350 |
).images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
if return_upscaled:
|
| 352 |
upscaled = realesrgan(image[0], "realesr-general-x4v3", 0.5, 2)
|
| 353 |
return image, upscaled, seed
|
| 354 |
else:
|
| 355 |
-
return image,
|
| 356 |
|
| 357 |
|
| 358 |
# --- Examples and UI Layout ---
|
|
|
|
| 3 |
import random
|
| 4 |
import torch
|
| 5 |
import spaces
|
| 6 |
+
from transformers import AutoModelForImageSegmentation
|
| 7 |
+
from torchvision import transforms
|
| 8 |
+
from typing import Union, Tuple
|
| 9 |
from PIL import Image
|
| 10 |
from diffusers import FlowMatchEulerDiscreteScheduler,DiffusionPipeline
|
| 11 |
from optimization import optimize_pipeline_
|
|
|
|
| 17 |
import math
|
| 18 |
from huggingface_hub import hf_hub_download
|
| 19 |
from safetensors.torch import load_file
|
| 20 |
+
from typing import Union, Tuple
|
| 21 |
from basicsr.archs.rrdbnet_arch import RRDBNet
|
| 22 |
from basicsr.utils.download_util import load_file_from_url
|
| 23 |
from realesrgan import RealESRGANer
|
|
|
|
| 37 |
from PIL import Image
|
| 38 |
import gradio as gr
|
| 39 |
|
| 40 |
+
torch.set_float32_matmul_precision(["high", "highest"][0])
|
| 41 |
+
|
| 42 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
| 43 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
| 44 |
+
)
|
| 45 |
+
birefnet.to("cuda")
|
| 46 |
+
|
| 47 |
+
transform_image = transforms.Compose(
|
| 48 |
+
[
|
| 49 |
+
transforms.Resize((1024, 1024)),
|
| 50 |
+
transforms.ToTensor(),
|
| 51 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 52 |
+
]
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
@spaces.GPU
|
| 56 |
+
def processRemove(image: Image.Image) -> Image.Image:
|
| 57 |
+
"""
|
| 58 |
+
Apply BiRefNet-based image segmentation to remove the background.
|
| 59 |
+
This function preprocesses the input image, runs it through a BiRefNet segmentation model to obtain a mask,
|
| 60 |
+
and applies the mask as an alpha (transparency) channel to the original image.
|
| 61 |
+
Args:
|
| 62 |
+
image (PIL.Image): The input RGB image.
|
| 63 |
+
Returns:
|
| 64 |
+
PIL.Image: The image with the background removed, using the segmentation mask as transparency.
|
| 65 |
+
"""
|
| 66 |
+
image_size = image.size
|
| 67 |
+
input_images = transform_image(image).unsqueeze(0).to("cuda")
|
| 68 |
+
# Prediction
|
| 69 |
+
with torch.no_grad():
|
| 70 |
+
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
| 71 |
+
pred = preds[0].squeeze()
|
| 72 |
+
pred_pil = transforms.ToPILImage()(pred)
|
| 73 |
+
mask = pred_pil.resize(image_size)
|
| 74 |
+
image.putalpha(mask)
|
| 75 |
+
return image
|
| 76 |
|
| 77 |
# --- Upscaling ---
|
| 78 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
| 384 |
true_cfg_scale=true_guidance_scale,
|
| 385 |
num_images_per_prompt=num_images_per_prompt,
|
| 386 |
).images
|
| 387 |
+
|
| 388 |
+
im = load_img(image[0], output_type="pil")
|
| 389 |
+
im = im.convert("RGB")
|
| 390 |
+
origin = im.copy()
|
| 391 |
+
removed_image = process(im)
|
| 392 |
+
|
| 393 |
if return_upscaled:
|
| 394 |
upscaled = realesrgan(image[0], "realesr-general-x4v3", 0.5, 2)
|
| 395 |
return image, upscaled, seed
|
| 396 |
else:
|
| 397 |
+
return image, removed_image, seed
|
| 398 |
|
| 399 |
|
| 400 |
# --- Examples and UI Layout ---
|