Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2022 Yifan Peng (Carnegie Mellon University) | |
| # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) | |
| """Branchformer encoder definition. | |
| Reference: | |
| Yifan Peng, Siddharth Dalmia, Ian Lane, and Shinji Watanabe, | |
| “Branchformer: Parallel MLP-Attention Architectures to Capture | |
| Local and Global Context for Speech Recognition and Understanding,” | |
| in Proceedings of ICML, 2022. | |
| """ | |
| import logging | |
| from typing import List, Optional, Tuple, Union | |
| import numpy | |
| import torch | |
| import torch.nn as nn | |
| from funasr_detach.models.branchformer.cgmlp import ConvolutionalGatingMLP | |
| from funasr_detach.models.branchformer.fastformer import FastSelfAttention | |
| from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask | |
| from funasr_detach.models.transformer.attention import ( # noqa: H301 | |
| LegacyRelPositionMultiHeadedAttention, | |
| MultiHeadedAttention, | |
| RelPositionMultiHeadedAttention, | |
| ) | |
| from funasr_detach.models.transformer.embedding import ( # noqa: H301 | |
| LegacyRelPositionalEncoding, | |
| PositionalEncoding, | |
| RelPositionalEncoding, | |
| ScaledPositionalEncoding, | |
| ) | |
| from funasr_detach.models.transformer.layer_norm import LayerNorm | |
| from funasr_detach.models.transformer.utils.repeat import repeat | |
| from funasr_detach.models.transformer.utils.subsampling import ( | |
| Conv2dSubsampling, | |
| Conv2dSubsampling2, | |
| Conv2dSubsampling6, | |
| Conv2dSubsampling8, | |
| TooShortUttError, | |
| check_short_utt, | |
| ) | |
| from funasr_detach.register import tables | |
| class BranchformerEncoderLayer(torch.nn.Module): | |
| """Branchformer encoder layer module. | |
| Args: | |
| size (int): model dimension | |
| attn: standard self-attention or efficient attention, optional | |
| cgmlp: ConvolutionalGatingMLP, optional | |
| dropout_rate (float): dropout probability | |
| merge_method (str): concat, learned_ave, fixed_ave | |
| cgmlp_weight (float): weight of the cgmlp branch, between 0 and 1, | |
| used if merge_method is fixed_ave | |
| attn_branch_drop_rate (float): probability of dropping the attn branch, | |
| used if merge_method is learned_ave | |
| stochastic_depth_rate (float): stochastic depth probability | |
| """ | |
| def __init__( | |
| self, | |
| size: int, | |
| attn: Optional[torch.nn.Module], | |
| cgmlp: Optional[torch.nn.Module], | |
| dropout_rate: float, | |
| merge_method: str, | |
| cgmlp_weight: float = 0.5, | |
| attn_branch_drop_rate: float = 0.0, | |
| stochastic_depth_rate: float = 0.0, | |
| ): | |
| super().__init__() | |
| assert (attn is not None) or ( | |
| cgmlp is not None | |
| ), "At least one branch should be valid" | |
| self.size = size | |
| self.attn = attn | |
| self.cgmlp = cgmlp | |
| self.merge_method = merge_method | |
| self.cgmlp_weight = cgmlp_weight | |
| self.attn_branch_drop_rate = attn_branch_drop_rate | |
| self.stochastic_depth_rate = stochastic_depth_rate | |
| self.use_two_branches = (attn is not None) and (cgmlp is not None) | |
| if attn is not None: | |
| self.norm_mha = LayerNorm(size) # for the MHA module | |
| if cgmlp is not None: | |
| self.norm_mlp = LayerNorm(size) # for the MLP module | |
| self.norm_final = LayerNorm(size) # for the final output of the block | |
| self.dropout = torch.nn.Dropout(dropout_rate) | |
| if self.use_two_branches: | |
| if merge_method == "concat": | |
| self.merge_proj = torch.nn.Linear(size + size, size) | |
| elif merge_method == "learned_ave": | |
| # attention-based pooling for two branches | |
| self.pooling_proj1 = torch.nn.Linear(size, 1) | |
| self.pooling_proj2 = torch.nn.Linear(size, 1) | |
| # linear projections for calculating merging weights | |
| self.weight_proj1 = torch.nn.Linear(size, 1) | |
| self.weight_proj2 = torch.nn.Linear(size, 1) | |
| # linear projection after weighted average | |
| self.merge_proj = torch.nn.Linear(size, size) | |
| elif merge_method == "fixed_ave": | |
| assert ( | |
| 0.0 <= cgmlp_weight <= 1.0 | |
| ), "cgmlp weight should be between 0.0 and 1.0" | |
| # remove the other branch if only one branch is used | |
| if cgmlp_weight == 0.0: | |
| self.use_two_branches = False | |
| self.cgmlp = None | |
| self.norm_mlp = None | |
| elif cgmlp_weight == 1.0: | |
| self.use_two_branches = False | |
| self.attn = None | |
| self.norm_mha = None | |
| # linear projection after weighted average | |
| self.merge_proj = torch.nn.Linear(size, size) | |
| else: | |
| raise ValueError(f"unknown merge method: {merge_method}") | |
| else: | |
| self.merge_proj = torch.nn.Identity() | |
| def forward(self, x_input, mask, cache=None): | |
| """Compute encoded features. | |
| Args: | |
| x_input (Union[Tuple, torch.Tensor]): Input tensor w/ or w/o pos emb. | |
| - w/ pos emb: Tuple of tensors [(#batch, time, size), (1, time, size)]. | |
| - w/o pos emb: Tensor (#batch, time, size). | |
| mask (torch.Tensor): Mask tensor for the input (#batch, 1, time). | |
| cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size). | |
| Returns: | |
| torch.Tensor: Output tensor (#batch, time, size). | |
| torch.Tensor: Mask tensor (#batch, time). | |
| """ | |
| if cache is not None: | |
| raise NotImplementedError("cache is not None, which is not tested") | |
| if isinstance(x_input, tuple): | |
| x, pos_emb = x_input[0], x_input[1] | |
| else: | |
| x, pos_emb = x_input, None | |
| skip_layer = False | |
| # with stochastic depth, residual connection `x + f(x)` becomes | |
| # `x <- x + 1 / (1 - p) * f(x)` at training time. | |
| stoch_layer_coeff = 1.0 | |
| if self.training and self.stochastic_depth_rate > 0: | |
| skip_layer = torch.rand(1).item() < self.stochastic_depth_rate | |
| stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate) | |
| if skip_layer: | |
| if cache is not None: | |
| x = torch.cat([cache, x], dim=1) | |
| if pos_emb is not None: | |
| return (x, pos_emb), mask | |
| return x, mask | |
| # Two branches | |
| x1 = x | |
| x2 = x | |
| # Branch 1: multi-headed attention module | |
| if self.attn is not None: | |
| x1 = self.norm_mha(x1) | |
| if isinstance(self.attn, FastSelfAttention): | |
| x_att = self.attn(x1, mask) | |
| else: | |
| if pos_emb is not None: | |
| x_att = self.attn(x1, x1, x1, pos_emb, mask) | |
| else: | |
| x_att = self.attn(x1, x1, x1, mask) | |
| x1 = self.dropout(x_att) | |
| # Branch 2: convolutional gating mlp | |
| if self.cgmlp is not None: | |
| x2 = self.norm_mlp(x2) | |
| if pos_emb is not None: | |
| x2 = (x2, pos_emb) | |
| x2 = self.cgmlp(x2, mask) | |
| if isinstance(x2, tuple): | |
| x2 = x2[0] | |
| x2 = self.dropout(x2) | |
| # Merge two branches | |
| if self.use_two_branches: | |
| if self.merge_method == "concat": | |
| x = x + stoch_layer_coeff * self.dropout( | |
| self.merge_proj(torch.cat([x1, x2], dim=-1)) | |
| ) | |
| elif self.merge_method == "learned_ave": | |
| if ( | |
| self.training | |
| and self.attn_branch_drop_rate > 0 | |
| and torch.rand(1).item() < self.attn_branch_drop_rate | |
| ): | |
| # Drop the attn branch | |
| w1, w2 = 0.0, 1.0 | |
| else: | |
| # branch1 | |
| score1 = ( | |
| self.pooling_proj1(x1).transpose(1, 2) / self.size**0.5 | |
| ) # (batch, 1, time) | |
| if mask is not None: | |
| min_value = float( | |
| numpy.finfo( | |
| torch.tensor(0, dtype=score1.dtype).numpy().dtype | |
| ).min | |
| ) | |
| score1 = score1.masked_fill(mask.eq(0), min_value) | |
| score1 = torch.softmax(score1, dim=-1).masked_fill( | |
| mask.eq(0), 0.0 | |
| ) | |
| else: | |
| score1 = torch.softmax(score1, dim=-1) | |
| pooled1 = torch.matmul(score1, x1).squeeze(1) # (batch, size) | |
| weight1 = self.weight_proj1(pooled1) # (batch, 1) | |
| # branch2 | |
| score2 = ( | |
| self.pooling_proj2(x2).transpose(1, 2) / self.size**0.5 | |
| ) # (batch, 1, time) | |
| if mask is not None: | |
| min_value = float( | |
| numpy.finfo( | |
| torch.tensor(0, dtype=score2.dtype).numpy().dtype | |
| ).min | |
| ) | |
| score2 = score2.masked_fill(mask.eq(0), min_value) | |
| score2 = torch.softmax(score2, dim=-1).masked_fill( | |
| mask.eq(0), 0.0 | |
| ) | |
| else: | |
| score2 = torch.softmax(score2, dim=-1) | |
| pooled2 = torch.matmul(score2, x2).squeeze(1) # (batch, size) | |
| weight2 = self.weight_proj2(pooled2) # (batch, 1) | |
| # normalize weights of two branches | |
| merge_weights = torch.softmax( | |
| torch.cat([weight1, weight2], dim=-1), dim=-1 | |
| ) # (batch, 2) | |
| merge_weights = merge_weights.unsqueeze(-1).unsqueeze( | |
| -1 | |
| ) # (batch, 2, 1, 1) | |
| w1, w2 = merge_weights[:, 0], merge_weights[:, 1] # (batch, 1, 1) | |
| x = x + stoch_layer_coeff * self.dropout( | |
| self.merge_proj(w1 * x1 + w2 * x2) | |
| ) | |
| elif self.merge_method == "fixed_ave": | |
| x = x + stoch_layer_coeff * self.dropout( | |
| self.merge_proj( | |
| (1.0 - self.cgmlp_weight) * x1 + self.cgmlp_weight * x2 | |
| ) | |
| ) | |
| else: | |
| raise RuntimeError(f"unknown merge method: {self.merge_method}") | |
| else: | |
| if self.attn is None: | |
| x = x + stoch_layer_coeff * self.dropout(self.merge_proj(x2)) | |
| elif self.cgmlp is None: | |
| x = x + stoch_layer_coeff * self.dropout(self.merge_proj(x1)) | |
| else: | |
| # This should not happen | |
| raise RuntimeError("Both branches are not None, which is unexpected.") | |
| x = self.norm_final(x) | |
| if pos_emb is not None: | |
| return (x, pos_emb), mask | |
| return x, mask | |
| class BranchformerEncoder(nn.Module): | |
| """Branchformer encoder module.""" | |
| def __init__( | |
| self, | |
| input_size: int, | |
| output_size: int = 256, | |
| use_attn: bool = True, | |
| attention_heads: int = 4, | |
| attention_layer_type: str = "rel_selfattn", | |
| pos_enc_layer_type: str = "rel_pos", | |
| rel_pos_type: str = "latest", | |
| use_cgmlp: bool = True, | |
| cgmlp_linear_units: int = 2048, | |
| cgmlp_conv_kernel: int = 31, | |
| use_linear_after_conv: bool = False, | |
| gate_activation: str = "identity", | |
| merge_method: str = "concat", | |
| cgmlp_weight: Union[float, List[float]] = 0.5, | |
| attn_branch_drop_rate: Union[float, List[float]] = 0.0, | |
| num_blocks: int = 12, | |
| dropout_rate: float = 0.1, | |
| positional_dropout_rate: float = 0.1, | |
| attention_dropout_rate: float = 0.0, | |
| input_layer: Optional[str] = "conv2d", | |
| zero_triu: bool = False, | |
| padding_idx: int = -1, | |
| stochastic_depth_rate: Union[float, List[float]] = 0.0, | |
| ): | |
| super().__init__() | |
| self._output_size = output_size | |
| if rel_pos_type == "legacy": | |
| if pos_enc_layer_type == "rel_pos": | |
| pos_enc_layer_type = "legacy_rel_pos" | |
| if attention_layer_type == "rel_selfattn": | |
| attention_layer_type = "legacy_rel_selfattn" | |
| elif rel_pos_type == "latest": | |
| assert attention_layer_type != "legacy_rel_selfattn" | |
| assert pos_enc_layer_type != "legacy_rel_pos" | |
| else: | |
| raise ValueError("unknown rel_pos_type: " + rel_pos_type) | |
| if pos_enc_layer_type == "abs_pos": | |
| pos_enc_class = PositionalEncoding | |
| elif pos_enc_layer_type == "scaled_abs_pos": | |
| pos_enc_class = ScaledPositionalEncoding | |
| elif pos_enc_layer_type == "rel_pos": | |
| assert attention_layer_type == "rel_selfattn" | |
| pos_enc_class = RelPositionalEncoding | |
| elif pos_enc_layer_type == "legacy_rel_pos": | |
| assert attention_layer_type == "legacy_rel_selfattn" | |
| pos_enc_class = LegacyRelPositionalEncoding | |
| logging.warning( | |
| "Using legacy_rel_pos and it will be deprecated in the future." | |
| ) | |
| else: | |
| raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type) | |
| if input_layer == "linear": | |
| self.embed = torch.nn.Sequential( | |
| torch.nn.Linear(input_size, output_size), | |
| torch.nn.LayerNorm(output_size), | |
| torch.nn.Dropout(dropout_rate), | |
| pos_enc_class(output_size, positional_dropout_rate), | |
| ) | |
| elif input_layer == "conv2d": | |
| self.embed = Conv2dSubsampling( | |
| input_size, | |
| output_size, | |
| dropout_rate, | |
| pos_enc_class(output_size, positional_dropout_rate), | |
| ) | |
| elif input_layer == "conv2d2": | |
| self.embed = Conv2dSubsampling2( | |
| input_size, | |
| output_size, | |
| dropout_rate, | |
| pos_enc_class(output_size, positional_dropout_rate), | |
| ) | |
| elif input_layer == "conv2d6": | |
| self.embed = Conv2dSubsampling6( | |
| input_size, | |
| output_size, | |
| dropout_rate, | |
| pos_enc_class(output_size, positional_dropout_rate), | |
| ) | |
| elif input_layer == "conv2d8": | |
| self.embed = Conv2dSubsampling8( | |
| input_size, | |
| output_size, | |
| dropout_rate, | |
| pos_enc_class(output_size, positional_dropout_rate), | |
| ) | |
| elif input_layer == "embed": | |
| self.embed = torch.nn.Sequential( | |
| torch.nn.Embedding(input_size, output_size, padding_idx=padding_idx), | |
| pos_enc_class(output_size, positional_dropout_rate), | |
| ) | |
| elif isinstance(input_layer, torch.nn.Module): | |
| self.embed = torch.nn.Sequential( | |
| input_layer, | |
| pos_enc_class(output_size, positional_dropout_rate), | |
| ) | |
| elif input_layer is None: | |
| if input_size == output_size: | |
| self.embed = None | |
| else: | |
| self.embed = torch.nn.Linear(input_size, output_size) | |
| else: | |
| raise ValueError("unknown input_layer: " + input_layer) | |
| if attention_layer_type == "selfattn": | |
| encoder_selfattn_layer = MultiHeadedAttention | |
| encoder_selfattn_layer_args = ( | |
| attention_heads, | |
| output_size, | |
| attention_dropout_rate, | |
| ) | |
| elif attention_layer_type == "legacy_rel_selfattn": | |
| assert pos_enc_layer_type == "legacy_rel_pos" | |
| encoder_selfattn_layer = LegacyRelPositionMultiHeadedAttention | |
| encoder_selfattn_layer_args = ( | |
| attention_heads, | |
| output_size, | |
| attention_dropout_rate, | |
| ) | |
| logging.warning( | |
| "Using legacy_rel_selfattn and it will be deprecated in the future." | |
| ) | |
| elif attention_layer_type == "rel_selfattn": | |
| assert pos_enc_layer_type == "rel_pos" | |
| encoder_selfattn_layer = RelPositionMultiHeadedAttention | |
| encoder_selfattn_layer_args = ( | |
| attention_heads, | |
| output_size, | |
| attention_dropout_rate, | |
| zero_triu, | |
| ) | |
| elif attention_layer_type == "fast_selfattn": | |
| assert pos_enc_layer_type in ["abs_pos", "scaled_abs_pos"] | |
| encoder_selfattn_layer = FastSelfAttention | |
| encoder_selfattn_layer_args = ( | |
| output_size, | |
| attention_heads, | |
| attention_dropout_rate, | |
| ) | |
| else: | |
| raise ValueError("unknown encoder_attn_layer: " + attention_layer_type) | |
| cgmlp_layer = ConvolutionalGatingMLP | |
| cgmlp_layer_args = ( | |
| output_size, | |
| cgmlp_linear_units, | |
| cgmlp_conv_kernel, | |
| dropout_rate, | |
| use_linear_after_conv, | |
| gate_activation, | |
| ) | |
| if isinstance(stochastic_depth_rate, float): | |
| stochastic_depth_rate = [stochastic_depth_rate] * num_blocks | |
| if len(stochastic_depth_rate) != num_blocks: | |
| raise ValueError( | |
| f"Length of stochastic_depth_rate ({len(stochastic_depth_rate)}) " | |
| f"should be equal to num_blocks ({num_blocks})" | |
| ) | |
| if isinstance(cgmlp_weight, float): | |
| cgmlp_weight = [cgmlp_weight] * num_blocks | |
| if len(cgmlp_weight) != num_blocks: | |
| raise ValueError( | |
| f"Length of cgmlp_weight ({len(cgmlp_weight)}) should be equal to " | |
| f"num_blocks ({num_blocks})" | |
| ) | |
| if isinstance(attn_branch_drop_rate, float): | |
| attn_branch_drop_rate = [attn_branch_drop_rate] * num_blocks | |
| if len(attn_branch_drop_rate) != num_blocks: | |
| raise ValueError( | |
| f"Length of attn_branch_drop_rate ({len(attn_branch_drop_rate)}) " | |
| f"should be equal to num_blocks ({num_blocks})" | |
| ) | |
| self.encoders = repeat( | |
| num_blocks, | |
| lambda lnum: BranchformerEncoderLayer( | |
| output_size, | |
| ( | |
| encoder_selfattn_layer(*encoder_selfattn_layer_args) | |
| if use_attn | |
| else None | |
| ), | |
| cgmlp_layer(*cgmlp_layer_args) if use_cgmlp else None, | |
| dropout_rate, | |
| merge_method, | |
| cgmlp_weight[lnum], | |
| attn_branch_drop_rate[lnum], | |
| stochastic_depth_rate[lnum], | |
| ), | |
| ) | |
| self.after_norm = LayerNorm(output_size) | |
| def output_size(self) -> int: | |
| return self._output_size | |
| def forward( | |
| self, | |
| xs_pad: torch.Tensor, | |
| ilens: torch.Tensor, | |
| prev_states: torch.Tensor = None, | |
| ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: | |
| """Calculate forward propagation. | |
| Args: | |
| xs_pad (torch.Tensor): Input tensor (#batch, L, input_size). | |
| ilens (torch.Tensor): Input length (#batch). | |
| prev_states (torch.Tensor): Not to be used now. | |
| Returns: | |
| torch.Tensor: Output tensor (#batch, L, output_size). | |
| torch.Tensor: Output length (#batch). | |
| torch.Tensor: Not to be used now. | |
| """ | |
| masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device) | |
| if ( | |
| isinstance(self.embed, Conv2dSubsampling) | |
| or isinstance(self.embed, Conv2dSubsampling2) | |
| or isinstance(self.embed, Conv2dSubsampling6) | |
| or isinstance(self.embed, Conv2dSubsampling8) | |
| ): | |
| short_status, limit_size = check_short_utt(self.embed, xs_pad.size(1)) | |
| if short_status: | |
| raise TooShortUttError( | |
| f"has {xs_pad.size(1)} frames and is too short for subsampling " | |
| + f"(it needs more than {limit_size} frames), return empty results", | |
| xs_pad.size(1), | |
| limit_size, | |
| ) | |
| xs_pad, masks = self.embed(xs_pad, masks) | |
| elif self.embed is not None: | |
| xs_pad = self.embed(xs_pad) | |
| xs_pad, masks = self.encoders(xs_pad, masks) | |
| if isinstance(xs_pad, tuple): | |
| xs_pad = xs_pad[0] | |
| xs_pad = self.after_norm(xs_pad) | |
| olens = masks.squeeze(1).sum(1) | |
| return xs_pad, olens, None | |