Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import logging | |
| import math | |
| from typing import List, Tuple | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from funasr_detach.models.data2vec import utils | |
| from funasr_detach.models.data2vec.multihead_attention import MultiheadAttention | |
| class ConvFeatureExtractionModel(nn.Module): | |
| def __init__( | |
| self, | |
| conv_layers: List[Tuple[int, int, int]], | |
| dropout: float = 0.0, | |
| mode: str = "default", | |
| conv_bias: bool = False, | |
| in_d: int = 1, | |
| ): | |
| super().__init__() | |
| assert mode in {"default", "layer_norm"} | |
| def block( | |
| n_in, | |
| n_out, | |
| k, | |
| stride, | |
| is_layer_norm=False, | |
| is_group_norm=False, | |
| conv_bias=False, | |
| ): | |
| def make_conv(): | |
| conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias) | |
| nn.init.kaiming_normal_(conv.weight) | |
| return conv | |
| assert ( | |
| is_layer_norm and is_group_norm | |
| ) == False, "layer norm and group norm are exclusive" | |
| if is_layer_norm: | |
| return nn.Sequential( | |
| make_conv(), | |
| nn.Dropout(p=dropout), | |
| nn.Sequential( | |
| utils.TransposeLast(), | |
| utils.Fp32LayerNorm(dim, elementwise_affine=True), | |
| utils.TransposeLast(), | |
| ), | |
| nn.GELU(), | |
| ) | |
| elif is_group_norm: | |
| return nn.Sequential( | |
| make_conv(), | |
| nn.Dropout(p=dropout), | |
| utils.Fp32GroupNorm(dim, dim, affine=True), | |
| nn.GELU(), | |
| ) | |
| else: | |
| return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU()) | |
| self.conv_layers = nn.ModuleList() | |
| for i, cl in enumerate(conv_layers): | |
| assert len(cl) == 3, "invalid conv definition: " + str(cl) | |
| (dim, k, stride) = cl | |
| self.conv_layers.append( | |
| block( | |
| in_d, | |
| dim, | |
| k, | |
| stride, | |
| is_layer_norm=mode == "layer_norm", | |
| is_group_norm=mode == "default" and i == 0, | |
| conv_bias=conv_bias, | |
| ) | |
| ) | |
| in_d = dim | |
| def forward(self, x): | |
| if len(x.shape) == 2: | |
| x = x.unsqueeze(1) | |
| else: | |
| x = x.transpose(1, 2) | |
| for conv in self.conv_layers: | |
| x = conv(x) | |
| return x | |
| def make_conv_pos(e, k, g): | |
| pos_conv = nn.Conv1d( | |
| e, | |
| e, | |
| kernel_size=k, | |
| padding=k // 2, | |
| groups=g, | |
| ) | |
| dropout = 0 | |
| std = math.sqrt((4 * (1.0 - dropout)) / (k * e)) | |
| nn.init.normal_(pos_conv.weight, mean=0, std=std) | |
| nn.init.constant_(pos_conv.bias, 0) | |
| pos_conv = nn.utils.weight_norm(pos_conv, name="weight", dim=2) | |
| pos_conv = nn.Sequential(pos_conv, utils.SamePad(k), nn.GELU()) | |
| return pos_conv | |
| class TransformerEncoder(nn.Module): | |
| def build_encoder_layer(self): | |
| if self.layer_type == "transformer": | |
| layer = TransformerSentenceEncoderLayer( | |
| embedding_dim=self.embedding_dim, | |
| ffn_embedding_dim=self.encoder_ffn_embed_dim, | |
| num_attention_heads=self.encoder_attention_heads, | |
| dropout=self.dropout, | |
| attention_dropout=self.attention_dropout, | |
| activation_dropout=self.activation_dropout, | |
| activation_fn=self.activation_fn, | |
| layer_norm_first=self.layer_norm_first, | |
| ) | |
| else: | |
| logging.error("Only transformer is supported for data2vec now") | |
| return layer | |
| def __init__( | |
| self, | |
| # position | |
| dropout, | |
| encoder_embed_dim, | |
| required_seq_len_multiple, | |
| pos_conv_depth, | |
| conv_pos, | |
| conv_pos_groups, | |
| # transformer layers | |
| layer_type, | |
| encoder_layers, | |
| encoder_ffn_embed_dim, | |
| encoder_attention_heads, | |
| attention_dropout, | |
| activation_dropout, | |
| activation_fn, | |
| layer_norm_first, | |
| encoder_layerdrop, | |
| max_positions, | |
| ): | |
| super().__init__() | |
| # position | |
| self.dropout = dropout | |
| self.embedding_dim = encoder_embed_dim | |
| self.required_seq_len_multiple = required_seq_len_multiple | |
| if pos_conv_depth > 1: | |
| num_layers = pos_conv_depth | |
| k = max(3, conv_pos // num_layers) | |
| def make_conv_block(e, k, g, l): | |
| return nn.Sequential( | |
| *[ | |
| nn.Sequential( | |
| nn.Conv1d( | |
| e, | |
| e, | |
| kernel_size=k, | |
| padding=k // 2, | |
| groups=g, | |
| ), | |
| utils.SamePad(k), | |
| utils.TransposeLast(), | |
| torch.nn.LayerNorm(e, elementwise_affine=False), | |
| utils.TransposeLast(), | |
| nn.GELU(), | |
| ) | |
| for _ in range(l) | |
| ] | |
| ) | |
| self.pos_conv = make_conv_block( | |
| self.embedding_dim, k, conv_pos_groups, num_layers | |
| ) | |
| else: | |
| self.pos_conv = make_conv_pos( | |
| self.embedding_dim, | |
| conv_pos, | |
| conv_pos_groups, | |
| ) | |
| # transformer layers | |
| self.layer_type = layer_type | |
| self.encoder_ffn_embed_dim = encoder_ffn_embed_dim | |
| self.encoder_attention_heads = encoder_attention_heads | |
| self.attention_dropout = attention_dropout | |
| self.activation_dropout = activation_dropout | |
| self.activation_fn = activation_fn | |
| self.layer_norm_first = layer_norm_first | |
| self.layerdrop = encoder_layerdrop | |
| self.max_positions = max_positions | |
| self.layers = nn.ModuleList( | |
| [self.build_encoder_layer() for _ in range(encoder_layers)] | |
| ) | |
| self.layer_norm = torch.nn.LayerNorm(self.embedding_dim) | |
| self.apply(utils.init_bert_params) | |
| def forward(self, x, padding_mask=None, layer=None): | |
| x, layer_results = self.extract_features(x, padding_mask, layer) | |
| if self.layer_norm_first and layer is None: | |
| x = self.layer_norm(x) | |
| return x, layer_results | |
| def extract_features( | |
| self, | |
| x, | |
| padding_mask=None, | |
| tgt_layer=None, | |
| min_layer=0, | |
| ): | |
| if padding_mask is not None: | |
| x[padding_mask] = 0 | |
| x_conv = self.pos_conv(x.transpose(1, 2)) | |
| x_conv = x_conv.transpose(1, 2) | |
| x = x + x_conv | |
| if not self.layer_norm_first: | |
| x = self.layer_norm(x) | |
| # pad to the sequence length dimension | |
| x, pad_length = utils.pad_to_multiple( | |
| x, self.required_seq_len_multiple, dim=-2, value=0 | |
| ) | |
| if pad_length > 0 and padding_mask is None: | |
| padding_mask = x.new_zeros((x.size(0), x.size(1)), dtype=torch.bool) | |
| padding_mask[:, -pad_length:] = True | |
| else: | |
| padding_mask, _ = utils.pad_to_multiple( | |
| padding_mask, self.required_seq_len_multiple, dim=-1, value=True | |
| ) | |
| x = F.dropout(x, p=self.dropout, training=self.training) | |
| # B x T x C -> T x B x C | |
| x = x.transpose(0, 1) | |
| layer_results = [] | |
| r = None | |
| for i, layer in enumerate(self.layers): | |
| dropout_probability = np.random.random() if self.layerdrop > 0 else 1 | |
| if not self.training or (dropout_probability > self.layerdrop): | |
| x, (z, lr) = layer(x, self_attn_padding_mask=padding_mask) | |
| if i >= min_layer: | |
| layer_results.append((x, z, lr)) | |
| if i == tgt_layer: | |
| r = x | |
| break | |
| if r is not None: | |
| x = r | |
| # T x B x C -> B x T x C | |
| x = x.transpose(0, 1) | |
| # undo paddding | |
| if pad_length > 0: | |
| x = x[:, :-pad_length] | |
| def undo_pad(a, b, c): | |
| return ( | |
| a[:-pad_length], | |
| b[:-pad_length] if b is not None else b, | |
| c[:-pad_length], | |
| ) | |
| layer_results = [undo_pad(*u) for u in layer_results] | |
| return x, layer_results | |
| def max_positions(self): | |
| """Maximum output length supported by the encoder.""" | |
| return self.max_positions | |
| def upgrade_state_dict_named(self, state_dict, name): | |
| """Upgrade a (possibly old) state dict for new versions of fairseq.""" | |
| return state_dict | |
| class TransformerSentenceEncoderLayer(nn.Module): | |
| """ | |
| Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained | |
| models. | |
| """ | |
| def __init__( | |
| self, | |
| embedding_dim: int = 768, | |
| ffn_embedding_dim: int = 3072, | |
| num_attention_heads: int = 8, | |
| dropout: float = 0.1, | |
| attention_dropout: float = 0.1, | |
| activation_dropout: float = 0.1, | |
| activation_fn: str = "relu", | |
| layer_norm_first: bool = False, | |
| ) -> None: | |
| super().__init__() | |
| # Initialize parameters | |
| self.embedding_dim = embedding_dim | |
| self.dropout = dropout | |
| self.activation_dropout = activation_dropout | |
| # Initialize blocks | |
| self.activation_fn = utils.get_activation_fn(activation_fn) | |
| self.self_attn = MultiheadAttention( | |
| self.embedding_dim, | |
| num_attention_heads, | |
| dropout=attention_dropout, | |
| self_attention=True, | |
| ) | |
| self.dropout1 = nn.Dropout(dropout) | |
| self.dropout2 = nn.Dropout(self.activation_dropout) | |
| self.dropout3 = nn.Dropout(dropout) | |
| self.layer_norm_first = layer_norm_first | |
| # layer norm associated with the self attention layer | |
| self.self_attn_layer_norm = torch.nn.LayerNorm(self.embedding_dim) | |
| self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim) | |
| self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim) | |
| # layer norm associated with the position wise feed-forward NN | |
| self.final_layer_norm = torch.nn.LayerNorm(self.embedding_dim) | |
| def forward( | |
| self, | |
| x: torch.Tensor, # (T, B, C) | |
| self_attn_mask: torch.Tensor = None, | |
| self_attn_padding_mask: torch.Tensor = None, | |
| ): | |
| """ | |
| LayerNorm is applied either before or after the self-attention/ffn | |
| modules similar to the original Transformer imlementation. | |
| """ | |
| residual = x | |
| if self.layer_norm_first: | |
| x = self.self_attn_layer_norm(x) | |
| x, attn = self.self_attn( | |
| query=x, | |
| key=x, | |
| value=x, | |
| key_padding_mask=self_attn_padding_mask, | |
| attn_mask=self_attn_mask, | |
| need_weights=False, | |
| ) | |
| x = self.dropout1(x) | |
| x = residual + x | |
| residual = x | |
| x = self.final_layer_norm(x) | |
| x = self.activation_fn(self.fc1(x)) | |
| x = self.dropout2(x) | |
| x = self.fc2(x) | |
| layer_result = x | |
| x = self.dropout3(x) | |
| x = residual + x | |
| else: | |
| x, attn = self.self_attn( | |
| query=x, | |
| key=x, | |
| value=x, | |
| key_padding_mask=self_attn_padding_mask, | |
| need_weights=False, | |
| ) | |
| x = self.dropout1(x) | |
| x = residual + x | |
| x = self.self_attn_layer_norm(x) | |
| residual = x | |
| x = self.activation_fn(self.fc1(x)) | |
| x = self.dropout2(x) | |
| x = self.fc2(x) | |
| layer_result = x | |
| x = self.dropout3(x) | |
| x = residual + x | |
| x = self.final_layer_norm(x) | |
| return x, (attn, layer_result) | |