Spaces:
Running
on
Zero
Running
on
Zero
| import copy | |
| import numpy as np | |
| import time | |
| import torch | |
| from funasr_detach.models.eend.utils.power import create_powerlabel | |
| from itertools import combinations | |
| metrics = [ | |
| ("diarization_error", "speaker_scored", "DER"), | |
| ("speech_miss", "speech_scored", "SAD_MR"), | |
| ("speech_falarm", "speech_scored", "SAD_FR"), | |
| ("speaker_miss", "speaker_scored", "MI"), | |
| ("speaker_falarm", "speaker_scored", "FA"), | |
| ("speaker_error", "speaker_scored", "CF"), | |
| ("correct", "frames", "accuracy"), | |
| ] | |
| def recover_prediction(y, n_speaker): | |
| if n_speaker <= 1: | |
| return y | |
| elif n_speaker == 2: | |
| com_index = torch.from_numpy( | |
| np.array(list(combinations(np.arange(n_speaker), 2))) | |
| ).to(y.dtype) | |
| num_coms = com_index.shape[0] | |
| y_single = y[:, :-num_coms] | |
| y_olp = y[:, -num_coms:] | |
| olp_map_index = torch.where(y_olp > 0.5) | |
| olp_map_index = torch.stack(olp_map_index, dim=1) | |
| com_map_index = com_index[olp_map_index[:, -1]] | |
| speaker_map_index = ( | |
| torch.from_numpy(np.array(com_map_index)).view(-1).to(torch.int64) | |
| ) | |
| frame_map_index = ( | |
| olp_map_index[:, 0][:, None].repeat([1, 2]).view(-1).to(torch.int64) | |
| ) | |
| y_single[frame_map_index] = 0 | |
| y_single[frame_map_index, speaker_map_index] = 1 | |
| return y_single | |
| else: | |
| olp2_com_index = torch.from_numpy( | |
| np.array(list(combinations(np.arange(n_speaker), 2))) | |
| ).to(y.dtype) | |
| olp2_num_coms = olp2_com_index.shape[0] | |
| olp3_com_index = torch.from_numpy( | |
| np.array(list(combinations(np.arange(n_speaker), 3))) | |
| ).to(y.dtype) | |
| olp3_num_coms = olp3_com_index.shape[0] | |
| y_single = y[:, :n_speaker] | |
| y_olp2 = y[:, n_speaker : n_speaker + olp2_num_coms] | |
| y_olp3 = y[:, -olp3_num_coms:] | |
| olp3_map_index = torch.where(y_olp3 > 0.5) | |
| olp3_map_index = torch.stack(olp3_map_index, dim=1) | |
| olp3_com_map_index = olp3_com_index[olp3_map_index[:, -1]] | |
| olp3_speaker_map_index = ( | |
| torch.from_numpy(np.array(olp3_com_map_index)).view(-1).to(torch.int64) | |
| ) | |
| olp3_frame_map_index = ( | |
| olp3_map_index[:, 0][:, None].repeat([1, 3]).view(-1).to(torch.int64) | |
| ) | |
| y_single[olp3_frame_map_index] = 0 | |
| y_single[olp3_frame_map_index, olp3_speaker_map_index] = 1 | |
| y_olp2[olp3_frame_map_index] = 0 | |
| olp2_map_index = torch.where(y_olp2 > 0.5) | |
| olp2_map_index = torch.stack(olp2_map_index, dim=1) | |
| olp2_com_map_index = olp2_com_index[olp2_map_index[:, -1]] | |
| olp2_speaker_map_index = ( | |
| torch.from_numpy(np.array(olp2_com_map_index)).view(-1).to(torch.int64) | |
| ) | |
| olp2_frame_map_index = ( | |
| olp2_map_index[:, 0][:, None].repeat([1, 2]).view(-1).to(torch.int64) | |
| ) | |
| y_single[olp2_frame_map_index] = 0 | |
| y_single[olp2_frame_map_index, olp2_speaker_map_index] = 1 | |
| return y_single | |
| class PowerReporter: | |
| def __init__(self, valid_data_loader, mapping_dict, max_n_speaker): | |
| valid_data_loader_cp = copy.deepcopy(valid_data_loader) | |
| self.valid_data_loader = valid_data_loader_cp | |
| del valid_data_loader | |
| self.mapping_dict = mapping_dict | |
| self.max_n_speaker = max_n_speaker | |
| def report(self, model, eidx, device): | |
| self.report_val(model, eidx, device) | |
| def report_val(self, model, eidx, device): | |
| model.eval() | |
| ud_valid_start = time.time() | |
| valid_res, valid_loss, stats_keys, vad_valid_accuracy = self.report_core( | |
| model, self.valid_data_loader, device | |
| ) | |
| # Epoch Display | |
| valid_der = valid_res["diarization_error"] / valid_res["speaker_scored"] | |
| valid_accuracy = ( | |
| valid_res["correct"].to(torch.float32) / valid_res["frames"] * 100 | |
| ) | |
| vad_valid_accuracy = vad_valid_accuracy * 100 | |
| print( | |
| "Epoch ", | |
| eidx + 1, | |
| "Valid Loss ", | |
| valid_loss, | |
| "Valid_DER %.5f" % valid_der, | |
| "Valid_Accuracy %.5f%% " % valid_accuracy, | |
| "VAD_Valid_Accuracy %.5f%% " % vad_valid_accuracy, | |
| ) | |
| ud_valid = (time.time() - ud_valid_start) / 60.0 | |
| print("Valid cost time ... ", ud_valid) | |
| def inv_mapping_func(self, label, mapping_dict): | |
| if not isinstance(label, int): | |
| label = int(label) | |
| if label in mapping_dict["label2dec"].keys(): | |
| num = mapping_dict["label2dec"][label] | |
| else: | |
| num = -1 | |
| return num | |
| def report_core(self, model, data_loader, device): | |
| res = {} | |
| for item in metrics: | |
| res[item[0]] = 0.0 | |
| res[item[1]] = 0.0 | |
| with torch.no_grad(): | |
| loss_s = 0.0 | |
| uidx = 0 | |
| for xs, ts, orders in data_loader: | |
| xs = [x.to(device) for x in xs] | |
| ts = [t.to(device) for t in ts] | |
| orders = [o.to(device) for o in orders] | |
| loss, pit_loss, mpit_loss, att_loss, ys, logits, labels, attractors = ( | |
| model(xs, ts, orders) | |
| ) | |
| loss_s += loss.item() | |
| uidx += 1 | |
| for logit, t, att in zip(logits, labels, attractors): | |
| pred = torch.argmax(torch.softmax(logit, dim=-1), dim=-1) # (T, ) | |
| oov_index = torch.where(pred == self.mapping_dict["oov"])[0] | |
| for i in oov_index: | |
| if i > 0: | |
| pred[i] = pred[i - 1] | |
| else: | |
| pred[i] = 0 | |
| pred = [self.inv_mapping_func(i, self.mapping_dict) for i in pred] | |
| decisions = [ | |
| bin(num)[2:].zfill(self.max_n_speaker)[::-1] for num in pred | |
| ] | |
| decisions = ( | |
| torch.from_numpy( | |
| np.stack( | |
| [np.array([int(i) for i in dec]) for dec in decisions], | |
| axis=0, | |
| ) | |
| ) | |
| .to(att.device) | |
| .to(torch.float32) | |
| ) | |
| decisions = decisions[:, : att.shape[0]] | |
| stats = self.calc_diarization_error(decisions, t) | |
| res["speaker_scored"] += stats["speaker_scored"] | |
| res["speech_scored"] += stats["speech_scored"] | |
| res["frames"] += stats["frames"] | |
| for item in metrics: | |
| res[item[0]] += stats[item[0]] | |
| loss_s /= uidx | |
| vad_acc = 0 | |
| return res, loss_s, stats.keys(), vad_acc | |
| def calc_diarization_error(self, decisions, label, label_delay=0): | |
| label = label[: len(label) - label_delay, ...] | |
| n_ref = torch.sum(label, dim=-1) | |
| n_sys = torch.sum(decisions, dim=-1) | |
| res = {} | |
| res["speech_scored"] = torch.sum(n_ref > 0) | |
| res["speech_miss"] = torch.sum((n_ref > 0) & (n_sys == 0)) | |
| res["speech_falarm"] = torch.sum((n_ref == 0) & (n_sys > 0)) | |
| res["speaker_scored"] = torch.sum(n_ref) | |
| res["speaker_miss"] = torch.sum( | |
| torch.max(n_ref - n_sys, torch.zeros_like(n_ref)) | |
| ) | |
| res["speaker_falarm"] = torch.sum( | |
| torch.max(n_sys - n_ref, torch.zeros_like(n_ref)) | |
| ) | |
| n_map = torch.sum(((label == 1) & (decisions == 1)), dim=-1).to(torch.float32) | |
| res["speaker_error"] = torch.sum(torch.min(n_ref, n_sys) - n_map) | |
| res["correct"] = torch.sum(label == decisions) / label.shape[1] | |
| res["diarization_error"] = ( | |
| res["speaker_miss"] + res["speaker_falarm"] + res["speaker_error"] | |
| ) | |
| res["frames"] = len(label) | |
| return res | |