Spaces:
Running
on
Zero
Running
on
Zero
| # ------------------------------------------------------------------------------------------ | |
| # Copyright (c) Microsoft Corporation. All rights reserved. | |
| # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. | |
| # ------------------------------------------------------------------------------------------ | |
| import torch | |
| import torch.nn as nn | |
| from typing import Dict | |
| from .layers import LoRALayer | |
| def mark_only_lora_as_trainable(model: nn.Module, bias: str = "none") -> None: | |
| for n, p in model.named_parameters(): | |
| if "lora_" not in n and "cif" not in n: | |
| p.requires_grad = False | |
| if bias == "none": | |
| return | |
| elif bias == "all": | |
| for n, p in model.named_parameters(): | |
| if "bias" in n: | |
| p.requires_grad = True | |
| elif bias == "lora_only": | |
| for m in model.modules(): | |
| if isinstance(m, LoRALayer) and hasattr(m, "bias") and m.bias is not None: | |
| m.bias.requires_grad = True | |
| else: | |
| raise NotImplementedError | |
| def lora_state_dict(model: nn.Module, bias: str = "none") -> Dict[str, torch.Tensor]: | |
| my_state_dict = model.state_dict() | |
| if bias == "none": | |
| return {k: my_state_dict[k] for k in my_state_dict if "lora_" in k} | |
| elif bias == "all": | |
| return { | |
| k: my_state_dict[k] for k in my_state_dict if "lora_" in k or "bias" in k | |
| } | |
| elif bias == "lora_only": | |
| to_return = {} | |
| for k in my_state_dict: | |
| if "lora_" in k: | |
| to_return[k] = my_state_dict[k] | |
| bias_name = k.split("lora_")[0] + "bias" | |
| if bias_name in my_state_dict: | |
| to_return[bias_name] = my_state_dict[bias_name] | |
| return to_return | |
| else: | |
| raise NotImplementedError | |