Spaces:
Running
on
Zero
Running
on
Zero
| #!/usr/bin/env python3 | |
| # -*- encoding: utf-8 -*- | |
| # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. | |
| # MIT License (https://opensource.org/licenses/MIT) | |
| import time | |
| import torch | |
| import torch.nn as nn | |
| import torch.functional as F | |
| import logging | |
| from typing import Dict, Tuple | |
| from contextlib import contextmanager | |
| from distutils.version import LooseVersion | |
| from funasr_detach.register import tables | |
| from funasr_detach.models.ctc.ctc import CTC | |
| from funasr_detach.utils import postprocess_utils | |
| from funasr_detach.metrics.compute_acc import th_accuracy | |
| from funasr_detach.utils.datadir_writer import DatadirWriter | |
| from funasr_detach.models.paraformer.model import Paraformer | |
| from funasr_detach.models.paraformer.search import Hypothesis | |
| from funasr_detach.models.paraformer.cif_predictor import mae_loss | |
| from funasr_detach.train_utils.device_funcs import force_gatherable | |
| from funasr_detach.losses.label_smoothing_loss import LabelSmoothingLoss | |
| from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos | |
| from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask, pad_list | |
| from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank | |
| from funasr_detach.models.scama.utils import sequence_mask | |
| if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): | |
| from torch.cuda.amp import autocast | |
| else: | |
| # Nothing to do if torch<1.6.0 | |
| def autocast(enabled=True): | |
| yield | |
| class SCAMA(nn.Module): | |
| """ | |
| Author: Shiliang Zhang, Zhifu Gao, Haoneng Luo, Ming Lei, Jie Gao, Zhijie Yan, Lei Xie | |
| SCAMA: Streaming chunk-aware multihead attention for online end-to-end speech recognition | |
| https://arxiv.org/abs/2006.01712 | |
| """ | |
| def __init__( | |
| self, | |
| specaug: str = None, | |
| specaug_conf: dict = None, | |
| normalize: str = None, | |
| normalize_conf: dict = None, | |
| encoder: str = None, | |
| encoder_conf: dict = None, | |
| decoder: str = None, | |
| decoder_conf: dict = None, | |
| ctc: str = None, | |
| ctc_conf: dict = None, | |
| ctc_weight: float = 0.5, | |
| predictor: str = None, | |
| predictor_conf: dict = None, | |
| predictor_bias: int = 0, | |
| predictor_weight: float = 0.0, | |
| input_size: int = 80, | |
| vocab_size: int = -1, | |
| ignore_id: int = -1, | |
| blank_id: int = 0, | |
| sos: int = 1, | |
| eos: int = 2, | |
| lsm_weight: float = 0.0, | |
| length_normalized_loss: bool = False, | |
| share_embedding: bool = False, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| if specaug is not None: | |
| specaug_class = tables.specaug_classes.get(specaug) | |
| specaug = specaug_class(**specaug_conf) | |
| if normalize is not None: | |
| normalize_class = tables.normalize_classes.get(normalize) | |
| normalize = normalize_class(**normalize_conf) | |
| encoder_class = tables.encoder_classes.get(encoder) | |
| encoder = encoder_class(input_size=input_size, **encoder_conf) | |
| encoder_output_size = encoder.output_size() | |
| decoder_class = tables.decoder_classes.get(decoder) | |
| decoder = decoder_class( | |
| vocab_size=vocab_size, | |
| encoder_output_size=encoder_output_size, | |
| **decoder_conf, | |
| ) | |
| if ctc_weight > 0.0: | |
| if ctc_conf is None: | |
| ctc_conf = {} | |
| ctc = CTC( | |
| odim=vocab_size, encoder_output_size=encoder_output_size, **ctc_conf | |
| ) | |
| predictor_class = tables.predictor_classes.get(predictor) | |
| predictor = predictor_class(**predictor_conf) | |
| # note that eos is the same as sos (equivalent ID) | |
| self.blank_id = blank_id | |
| self.sos = sos if sos is not None else vocab_size - 1 | |
| self.eos = eos if eos is not None else vocab_size - 1 | |
| self.vocab_size = vocab_size | |
| self.ignore_id = ignore_id | |
| self.ctc_weight = ctc_weight | |
| self.specaug = specaug | |
| self.normalize = normalize | |
| self.encoder = encoder | |
| if ctc_weight == 1.0: | |
| self.decoder = None | |
| else: | |
| self.decoder = decoder | |
| self.criterion_att = LabelSmoothingLoss( | |
| size=vocab_size, | |
| padding_idx=ignore_id, | |
| smoothing=lsm_weight, | |
| normalize_length=length_normalized_loss, | |
| ) | |
| if ctc_weight == 0.0: | |
| self.ctc = None | |
| else: | |
| self.ctc = ctc | |
| self.predictor = predictor | |
| self.predictor_weight = predictor_weight | |
| self.predictor_bias = predictor_bias | |
| self.criterion_pre = mae_loss(normalize_length=length_normalized_loss) | |
| self.share_embedding = share_embedding | |
| if self.share_embedding: | |
| self.decoder.embed = None | |
| self.length_normalized_loss = length_normalized_loss | |
| self.beam_search = None | |
| self.error_calculator = None | |
| if self.encoder.overlap_chunk_cls is not None: | |
| from funasr_detach.models.scama.chunk_utilis import ( | |
| build_scama_mask_for_cross_attention_decoder, | |
| ) | |
| self.build_scama_mask_for_cross_attention_decoder_fn = ( | |
| build_scama_mask_for_cross_attention_decoder | |
| ) | |
| self.decoder_attention_chunk_type = kwargs.get( | |
| "decoder_attention_chunk_type", "chunk" | |
| ) | |
| def forward( | |
| self, | |
| speech: torch.Tensor, | |
| speech_lengths: torch.Tensor, | |
| text: torch.Tensor, | |
| text_lengths: torch.Tensor, | |
| **kwargs, | |
| ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: | |
| """Encoder + Decoder + Calc loss | |
| Args: | |
| speech: (Batch, Length, ...) | |
| speech_lengths: (Batch, ) | |
| text: (Batch, Length) | |
| text_lengths: (Batch,) | |
| """ | |
| decoding_ind = kwargs.get("decoding_ind") | |
| if len(text_lengths.size()) > 1: | |
| text_lengths = text_lengths[:, 0] | |
| if len(speech_lengths.size()) > 1: | |
| speech_lengths = speech_lengths[:, 0] | |
| batch_size = speech.shape[0] | |
| # Encoder | |
| ind = self.encoder.overlap_chunk_cls.random_choice(self.training, decoding_ind) | |
| encoder_out, encoder_out_lens = self.encode(speech, speech_lengths, ind=ind) | |
| loss_ctc, cer_ctc = None, None | |
| loss_pre = None | |
| stats = dict() | |
| # decoder: CTC branch | |
| if self.ctc_weight > 0.0: | |
| encoder_out_ctc, encoder_out_lens_ctc = ( | |
| self.encoder.overlap_chunk_cls.remove_chunk( | |
| encoder_out, encoder_out_lens, chunk_outs=None | |
| ) | |
| ) | |
| loss_ctc, cer_ctc = self._calc_ctc_loss( | |
| encoder_out_ctc, encoder_out_lens_ctc, text, text_lengths | |
| ) | |
| # Collect CTC branch stats | |
| stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None | |
| stats["cer_ctc"] = cer_ctc | |
| # decoder: Attention decoder branch | |
| loss_att, acc_att, cer_att, wer_att, loss_pre = self._calc_att_predictor_loss( | |
| encoder_out, encoder_out_lens, text, text_lengths | |
| ) | |
| # 3. CTC-Att loss definition | |
| if self.ctc_weight == 0.0: | |
| loss = loss_att + loss_pre * self.predictor_weight | |
| else: | |
| loss = ( | |
| self.ctc_weight * loss_ctc | |
| + (1 - self.ctc_weight) * loss_att | |
| + loss_pre * self.predictor_weight | |
| ) | |
| # Collect Attn branch stats | |
| stats["loss_att"] = loss_att.detach() if loss_att is not None else None | |
| stats["acc"] = acc_att | |
| stats["cer"] = cer_att | |
| stats["wer"] = wer_att | |
| stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None | |
| stats["loss"] = torch.clone(loss.detach()) | |
| # force_gatherable: to-device and to-tensor if scalar for DataParallel | |
| if self.length_normalized_loss: | |
| batch_size = (text_lengths + self.predictor_bias).sum() | |
| loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) | |
| return loss, stats, weight | |
| def encode( | |
| self, | |
| speech: torch.Tensor, | |
| speech_lengths: torch.Tensor, | |
| **kwargs, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Encoder. Note that this method is used by asr_inference.py | |
| Args: | |
| speech: (Batch, Length, ...) | |
| speech_lengths: (Batch, ) | |
| ind: int | |
| """ | |
| with autocast(False): | |
| # Data augmentation | |
| if self.specaug is not None and self.training: | |
| speech, speech_lengths = self.specaug(speech, speech_lengths) | |
| # Normalization for feature: e.g. Global-CMVN, Utterance-CMVN | |
| if self.normalize is not None: | |
| speech, speech_lengths = self.normalize(speech, speech_lengths) | |
| # Forward encoder | |
| encoder_out, encoder_out_lens, _ = self.encoder(speech, speech_lengths) | |
| if isinstance(encoder_out, tuple): | |
| encoder_out = encoder_out[0] | |
| return encoder_out, encoder_out_lens | |
| def encode_chunk( | |
| self, | |
| speech: torch.Tensor, | |
| speech_lengths: torch.Tensor, | |
| cache: dict = None, | |
| **kwargs, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Frontend + Encoder. Note that this method is used by asr_inference.py | |
| Args: | |
| speech: (Batch, Length, ...) | |
| speech_lengths: (Batch, ) | |
| ind: int | |
| """ | |
| with autocast(False): | |
| # Data augmentation | |
| if self.specaug is not None and self.training: | |
| speech, speech_lengths = self.specaug(speech, speech_lengths) | |
| # Normalization for feature: e.g. Global-CMVN, Utterance-CMVN | |
| if self.normalize is not None: | |
| speech, speech_lengths = self.normalize(speech, speech_lengths) | |
| # Forward encoder | |
| encoder_out, encoder_out_lens, _ = self.encoder.forward_chunk( | |
| speech, speech_lengths, cache=cache["encoder"] | |
| ) | |
| if isinstance(encoder_out, tuple): | |
| encoder_out = encoder_out[0] | |
| return encoder_out, torch.tensor([encoder_out.size(1)]) | |
| def calc_predictor_chunk(self, encoder_out, encoder_out_lens, cache=None, **kwargs): | |
| is_final = kwargs.get("is_final", False) | |
| return self.predictor.forward_chunk( | |
| encoder_out, cache["encoder"], is_final=is_final | |
| ) | |
| def _calc_att_predictor_loss( | |
| self, | |
| encoder_out: torch.Tensor, | |
| encoder_out_lens: torch.Tensor, | |
| ys_pad: torch.Tensor, | |
| ys_pad_lens: torch.Tensor, | |
| ): | |
| ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) | |
| ys_in_lens = ys_pad_lens + 1 | |
| encoder_out_mask = sequence_mask( | |
| encoder_out_lens, | |
| maxlen=encoder_out.size(1), | |
| dtype=encoder_out.dtype, | |
| device=encoder_out.device, | |
| )[:, None, :] | |
| mask_chunk_predictor = None | |
| if self.encoder.overlap_chunk_cls is not None: | |
| mask_chunk_predictor = ( | |
| self.encoder.overlap_chunk_cls.get_mask_chunk_predictor( | |
| None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
| ) | |
| ) | |
| mask_shfit_chunk = self.encoder.overlap_chunk_cls.get_mask_shfit_chunk( | |
| None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
| ) | |
| encoder_out = encoder_out * mask_shfit_chunk | |
| pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor( | |
| encoder_out, | |
| ys_out_pad, | |
| encoder_out_mask, | |
| ignore_id=self.ignore_id, | |
| mask_chunk_predictor=mask_chunk_predictor, | |
| target_label_length=ys_in_lens, | |
| ) | |
| predictor_alignments, predictor_alignments_len = ( | |
| self.predictor.gen_frame_alignments(pre_alphas, encoder_out_lens) | |
| ) | |
| encoder_chunk_size = self.encoder.overlap_chunk_cls.chunk_size_pad_shift_cur | |
| attention_chunk_center_bias = 0 | |
| attention_chunk_size = encoder_chunk_size | |
| decoder_att_look_back_factor = ( | |
| self.encoder.overlap_chunk_cls.decoder_att_look_back_factor_cur | |
| ) | |
| mask_shift_att_chunk_decoder = ( | |
| self.encoder.overlap_chunk_cls.get_mask_shift_att_chunk_decoder( | |
| None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
| ) | |
| ) | |
| scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn( | |
| predictor_alignments=predictor_alignments, | |
| encoder_sequence_length=encoder_out_lens, | |
| chunk_size=1, | |
| encoder_chunk_size=encoder_chunk_size, | |
| attention_chunk_center_bias=attention_chunk_center_bias, | |
| attention_chunk_size=attention_chunk_size, | |
| attention_chunk_type=self.decoder_attention_chunk_type, | |
| step=None, | |
| predictor_mask_chunk_hopping=mask_chunk_predictor, | |
| decoder_att_look_back_factor=decoder_att_look_back_factor, | |
| mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder, | |
| target_length=ys_in_lens, | |
| is_training=self.training, | |
| ) | |
| # try: | |
| # 1. Forward decoder | |
| decoder_out, _ = self.decoder( | |
| encoder_out, | |
| encoder_out_lens, | |
| ys_in_pad, | |
| ys_in_lens, | |
| chunk_mask=scama_mask, | |
| pre_acoustic_embeds=pre_acoustic_embeds, | |
| ) | |
| # 2. Compute attention loss | |
| loss_att = self.criterion_att(decoder_out, ys_out_pad) | |
| acc_att = th_accuracy( | |
| decoder_out.view(-1, self.vocab_size), | |
| ys_out_pad, | |
| ignore_label=self.ignore_id, | |
| ) | |
| # predictor loss | |
| loss_pre = self.criterion_pre( | |
| ys_in_lens.type_as(pre_token_length), pre_token_length | |
| ) | |
| # Compute cer/wer using attention-decoder | |
| if self.training or self.error_calculator is None: | |
| cer_att, wer_att = None, None | |
| else: | |
| ys_hat = decoder_out.argmax(dim=-1) | |
| cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) | |
| return loss_att, acc_att, cer_att, wer_att, loss_pre | |
| def calc_predictor_mask( | |
| self, | |
| encoder_out: torch.Tensor, | |
| encoder_out_lens: torch.Tensor, | |
| ys_pad: torch.Tensor = None, | |
| ys_pad_lens: torch.Tensor = None, | |
| ): | |
| # ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) | |
| # ys_in_lens = ys_pad_lens + 1 | |
| ys_out_pad, ys_in_lens = None, None | |
| encoder_out_mask = sequence_mask( | |
| encoder_out_lens, | |
| maxlen=encoder_out.size(1), | |
| dtype=encoder_out.dtype, | |
| device=encoder_out.device, | |
| )[:, None, :] | |
| mask_chunk_predictor = None | |
| mask_chunk_predictor = self.encoder.overlap_chunk_cls.get_mask_chunk_predictor( | |
| None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
| ) | |
| mask_shfit_chunk = self.encoder.overlap_chunk_cls.get_mask_shfit_chunk( | |
| None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
| ) | |
| encoder_out = encoder_out * mask_shfit_chunk | |
| pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor( | |
| encoder_out, | |
| ys_out_pad, | |
| encoder_out_mask, | |
| ignore_id=self.ignore_id, | |
| mask_chunk_predictor=mask_chunk_predictor, | |
| target_label_length=ys_in_lens, | |
| ) | |
| predictor_alignments, predictor_alignments_len = ( | |
| self.predictor.gen_frame_alignments(pre_alphas, encoder_out_lens) | |
| ) | |
| encoder_chunk_size = self.encoder.overlap_chunk_cls.chunk_size_pad_shift_cur | |
| attention_chunk_center_bias = 0 | |
| attention_chunk_size = encoder_chunk_size | |
| decoder_att_look_back_factor = ( | |
| self.encoder.overlap_chunk_cls.decoder_att_look_back_factor_cur | |
| ) | |
| mask_shift_att_chunk_decoder = ( | |
| self.encoder.overlap_chunk_cls.get_mask_shift_att_chunk_decoder( | |
| None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
| ) | |
| ) | |
| scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn( | |
| predictor_alignments=predictor_alignments, | |
| encoder_sequence_length=encoder_out_lens, | |
| chunk_size=1, | |
| encoder_chunk_size=encoder_chunk_size, | |
| attention_chunk_center_bias=attention_chunk_center_bias, | |
| attention_chunk_size=attention_chunk_size, | |
| attention_chunk_type=self.decoder_attention_chunk_type, | |
| step=None, | |
| predictor_mask_chunk_hopping=mask_chunk_predictor, | |
| decoder_att_look_back_factor=decoder_att_look_back_factor, | |
| mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder, | |
| target_length=ys_in_lens, | |
| is_training=self.training, | |
| ) | |
| return ( | |
| pre_acoustic_embeds, | |
| pre_token_length, | |
| predictor_alignments, | |
| predictor_alignments_len, | |
| scama_mask, | |
| ) | |
| def init_beam_search( | |
| self, | |
| **kwargs, | |
| ): | |
| from funasr_detach.models.scama.beam_search import BeamSearchScamaStreaming | |
| from funasr_detach.models.transformer.scorers.ctc import CTCPrefixScorer | |
| from funasr_detach.models.transformer.scorers.length_bonus import LengthBonus | |
| # 1. Build ASR model | |
| scorers = {} | |
| if self.ctc != None: | |
| ctc = CTCPrefixScorer(ctc=self.ctc, eos=self.eos) | |
| scorers.update(ctc=ctc) | |
| token_list = kwargs.get("token_list") | |
| scorers.update( | |
| decoder=self.decoder, | |
| length_bonus=LengthBonus(len(token_list)), | |
| ) | |
| # 3. Build ngram model | |
| # ngram is not supported now | |
| ngram = None | |
| scorers["ngram"] = ngram | |
| weights = dict( | |
| decoder=1.0 - kwargs.get("decoding_ctc_weight", 0.0), | |
| ctc=kwargs.get("decoding_ctc_weight", 0.0), | |
| lm=kwargs.get("lm_weight", 0.0), | |
| ngram=kwargs.get("ngram_weight", 0.0), | |
| length_bonus=kwargs.get("penalty", 0.0), | |
| ) | |
| beam_search = BeamSearchScamaStreaming( | |
| beam_size=kwargs.get("beam_size", 2), | |
| weights=weights, | |
| scorers=scorers, | |
| sos=self.sos, | |
| eos=self.eos, | |
| vocab_size=len(token_list), | |
| token_list=token_list, | |
| pre_beam_score_key=None if self.ctc_weight == 1.0 else "full", | |
| ) | |
| # beam_search.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval() | |
| # for scorer in scorers.values(): | |
| # if isinstance(scorer, torch.nn.Module): | |
| # scorer.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval() | |
| self.beam_search = beam_search | |
| def generate_chunk( | |
| self, | |
| speech, | |
| speech_lengths=None, | |
| key: list = None, | |
| tokenizer=None, | |
| frontend=None, | |
| **kwargs, | |
| ): | |
| cache = kwargs.get("cache", {}) | |
| speech = speech.to(device=kwargs["device"]) | |
| speech_lengths = speech_lengths.to(device=kwargs["device"]) | |
| # Encoder | |
| encoder_out, encoder_out_lens = self.encode_chunk( | |
| speech, speech_lengths, cache=cache, is_final=kwargs.get("is_final", False) | |
| ) | |
| if isinstance(encoder_out, tuple): | |
| encoder_out = encoder_out[0] | |
| if "running_hyps" not in cache: | |
| running_hyps = self.beam_search.init_hyp(encoder_out) | |
| cache["running_hyps"] = running_hyps | |
| # predictor | |
| predictor_outs = self.calc_predictor_chunk( | |
| encoder_out, | |
| encoder_out_lens, | |
| cache=cache, | |
| is_final=kwargs.get("is_final", False), | |
| ) | |
| pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = ( | |
| predictor_outs[0], | |
| predictor_outs[1], | |
| predictor_outs[2], | |
| predictor_outs[3], | |
| ) | |
| pre_token_length = pre_token_length.round().long() | |
| if torch.max(pre_token_length) < 1: | |
| return [] | |
| maxlen = minlen = pre_token_length | |
| if kwargs.get("is_final", False): | |
| maxlen += kwargs.get("token_num_relax", 5) | |
| minlen = max(0, minlen - kwargs.get("token_num_relax", 5)) | |
| # c. Passed the encoder result and the beam search | |
| nbest_hyps = self.beam_search( | |
| x=encoder_out[0], | |
| scama_mask=None, | |
| pre_acoustic_embeds=pre_acoustic_embeds, | |
| maxlen=int(maxlen), | |
| minlen=int(minlen), | |
| cache=cache, | |
| ) | |
| cache["running_hyps"] = nbest_hyps | |
| nbest_hyps = nbest_hyps[: self.nbest] | |
| results = [] | |
| for hyp in nbest_hyps: | |
| # assert isinstance(hyp, (Hypothesis)), type(hyp) | |
| # remove sos/eos and get results | |
| last_pos = -1 | |
| if isinstance(hyp.yseq, list): | |
| token_int = hyp.yseq[1:last_pos] | |
| else: | |
| token_int = hyp.yseq[1:last_pos].tolist() | |
| # remove blank symbol id, which is assumed to be 0 | |
| token_int = list( | |
| filter( | |
| lambda x: x != self.eos | |
| and x != self.sos | |
| and x != self.blank_id, | |
| token_int, | |
| ) | |
| ) | |
| # Change integer-ids to tokens | |
| token = tokenizer.ids2tokens(token_int) | |
| # text = tokenizer.tokens2text(token) | |
| result_i = token | |
| results.extend(result_i) | |
| return results | |
| def init_cache(self, cache: dict = {}, **kwargs): | |
| device = kwargs.get("device", "cuda") | |
| chunk_size = kwargs.get("chunk_size", [0, 10, 5]) | |
| encoder_chunk_look_back = kwargs.get("encoder_chunk_look_back", 0) | |
| decoder_chunk_look_back = kwargs.get("decoder_chunk_look_back", 0) | |
| batch_size = 1 | |
| enc_output_size = kwargs["encoder_conf"]["output_size"] | |
| feats_dims = ( | |
| kwargs["frontend_conf"]["n_mels"] * kwargs["frontend_conf"]["lfr_m"] | |
| ) | |
| cache_encoder = { | |
| "start_idx": 0, | |
| "cif_hidden": torch.zeros((batch_size, 1, enc_output_size)).to( | |
| device=device | |
| ), | |
| "cif_alphas": torch.zeros((batch_size, 1)).to(device=device), | |
| "chunk_size": chunk_size, | |
| "encoder_chunk_look_back": encoder_chunk_look_back, | |
| "last_chunk": False, | |
| "opt": None, | |
| "feats": torch.zeros( | |
| (batch_size, chunk_size[0] + chunk_size[2], feats_dims) | |
| ).to(device=device), | |
| "tail_chunk": False, | |
| } | |
| cache["encoder"] = cache_encoder | |
| cache_decoder = { | |
| "decode_fsmn": None, | |
| "decoder_chunk_look_back": decoder_chunk_look_back, | |
| "opt": None, | |
| "chunk_size": chunk_size, | |
| } | |
| cache["decoder"] = cache_decoder | |
| cache["frontend"] = {} | |
| cache["prev_samples"] = torch.empty(0).to(device=device) | |
| return cache | |
| def inference( | |
| self, | |
| data_in, | |
| data_lengths=None, | |
| key: list = None, | |
| tokenizer=None, | |
| frontend=None, | |
| cache: dict = {}, | |
| **kwargs, | |
| ): | |
| # init beamsearch | |
| is_use_ctc = ( | |
| kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None | |
| ) | |
| is_use_lm = ( | |
| kwargs.get("lm_weight", 0.0) > 0.00001 | |
| and kwargs.get("lm_file", None) is not None | |
| ) | |
| if self.beam_search is None: | |
| logging.info("enable beam_search") | |
| self.init_beam_search(**kwargs) | |
| self.nbest = kwargs.get("nbest", 1) | |
| if len(cache) == 0: | |
| self.init_cache(cache, **kwargs) | |
| meta_data = {} | |
| chunk_size = kwargs.get("chunk_size", [0, 10, 5]) | |
| chunk_stride_samples = int(chunk_size[1] * 960) # 600ms | |
| time1 = time.perf_counter() | |
| cfg = {"is_final": kwargs.get("is_final", False)} | |
| audio_sample_list = load_audio_text_image_video( | |
| data_in, | |
| fs=frontend.fs, | |
| audio_fs=kwargs.get("fs", 16000), | |
| data_type=kwargs.get("data_type", "sound"), | |
| tokenizer=tokenizer, | |
| cache=cfg, | |
| ) | |
| _is_final = cfg["is_final"] # if data_in is a file or url, set is_final=True | |
| time2 = time.perf_counter() | |
| meta_data["load_data"] = f"{time2 - time1:0.3f}" | |
| assert len(audio_sample_list) == 1, "batch_size must be set 1" | |
| audio_sample = torch.cat((cache["prev_samples"], audio_sample_list[0])) | |
| n = int(len(audio_sample) // chunk_stride_samples + int(_is_final)) | |
| m = int(len(audio_sample) % chunk_stride_samples * (1 - int(_is_final))) | |
| tokens = [] | |
| for i in range(n): | |
| kwargs["is_final"] = _is_final and i == n - 1 | |
| audio_sample_i = audio_sample[ | |
| i * chunk_stride_samples : (i + 1) * chunk_stride_samples | |
| ] | |
| # extract fbank feats | |
| speech, speech_lengths = extract_fbank( | |
| [audio_sample_i], | |
| data_type=kwargs.get("data_type", "sound"), | |
| frontend=frontend, | |
| cache=cache["frontend"], | |
| is_final=kwargs["is_final"], | |
| ) | |
| time3 = time.perf_counter() | |
| meta_data["extract_feat"] = f"{time3 - time2:0.3f}" | |
| meta_data["batch_data_time"] = ( | |
| speech_lengths.sum().item() | |
| * frontend.frame_shift | |
| * frontend.lfr_n | |
| / 1000 | |
| ) | |
| tokens_i = self.generate_chunk( | |
| speech, | |
| speech_lengths, | |
| key=key, | |
| tokenizer=tokenizer, | |
| cache=cache, | |
| frontend=frontend, | |
| **kwargs, | |
| ) | |
| tokens.extend(tokens_i) | |
| text_postprocessed, _ = postprocess_utils.sentence_postprocess(tokens) | |
| result_i = {"key": key[0], "text": text_postprocessed} | |
| result = [result_i] | |
| cache["prev_samples"] = audio_sample[:-m] | |
| if _is_final: | |
| self.init_cache(cache, **kwargs) | |
| if kwargs.get("output_dir"): | |
| writer = DatadirWriter(kwargs.get("output_dir")) | |
| ibest_writer = writer[f"{1}best_recog"] | |
| ibest_writer["token"][key[0]] = " ".join(tokens) | |
| ibest_writer["text"][key[0]] = text_postprocessed | |
| return result, meta_data | |