Spaces:
Running
on
Zero
Running
on
Zero
| #!/usr/bin/env python3 | |
| # -*- coding: utf-8 -*- | |
| # Copyright 2019 Tomoki Hayashi | |
| # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) | |
| """Layer modules for FFT block in FastSpeech (Feed-forward Transformer).""" | |
| import torch | |
| class MultiLayeredConv1d(torch.nn.Module): | |
| """Multi-layered conv1d for Transformer block. | |
| This is a module of multi-leyered conv1d designed | |
| to replace positionwise feed-forward network | |
| in Transforner block, which is introduced in | |
| `FastSpeech: Fast, Robust and Controllable Text to Speech`_. | |
| .. _`FastSpeech: Fast, Robust and Controllable Text to Speech`: | |
| https://arxiv.org/pdf/1905.09263.pdf | |
| """ | |
| def __init__(self, in_chans, hidden_chans, kernel_size, dropout_rate): | |
| """Initialize MultiLayeredConv1d module. | |
| Args: | |
| in_chans (int): Number of input channels. | |
| hidden_chans (int): Number of hidden channels. | |
| kernel_size (int): Kernel size of conv1d. | |
| dropout_rate (float): Dropout rate. | |
| """ | |
| super(MultiLayeredConv1d, self).__init__() | |
| self.w_1 = torch.nn.Conv1d( | |
| in_chans, | |
| hidden_chans, | |
| kernel_size, | |
| stride=1, | |
| padding=(kernel_size - 1) // 2, | |
| ) | |
| self.w_2 = torch.nn.Conv1d( | |
| hidden_chans, | |
| in_chans, | |
| kernel_size, | |
| stride=1, | |
| padding=(kernel_size - 1) // 2, | |
| ) | |
| self.dropout = torch.nn.Dropout(dropout_rate) | |
| def forward(self, x): | |
| """Calculate forward propagation. | |
| Args: | |
| x (torch.Tensor): Batch of input tensors (B, T, in_chans). | |
| Returns: | |
| torch.Tensor: Batch of output tensors (B, T, hidden_chans). | |
| """ | |
| x = torch.relu(self.w_1(x.transpose(-1, 1))).transpose(-1, 1) | |
| return self.w_2(self.dropout(x).transpose(-1, 1)).transpose(-1, 1) | |
| class FsmnFeedForward(torch.nn.Module): | |
| """Position-wise feed forward for FSMN blocks. | |
| This is a module of multi-leyered conv1d designed | |
| to replace position-wise feed-forward network | |
| in FSMN block. | |
| """ | |
| def __init__(self, in_chans, hidden_chans, out_chans, kernel_size, dropout_rate): | |
| """Initialize FsmnFeedForward module. | |
| Args: | |
| in_chans (int): Number of input channels. | |
| hidden_chans (int): Number of hidden channels. | |
| out_chans (int): Number of output channels. | |
| kernel_size (int): Kernel size of conv1d. | |
| dropout_rate (float): Dropout rate. | |
| """ | |
| super(FsmnFeedForward, self).__init__() | |
| self.w_1 = torch.nn.Conv1d( | |
| in_chans, | |
| hidden_chans, | |
| kernel_size, | |
| stride=1, | |
| padding=(kernel_size - 1) // 2, | |
| ) | |
| self.w_2 = torch.nn.Conv1d( | |
| hidden_chans, | |
| out_chans, | |
| kernel_size, | |
| stride=1, | |
| padding=(kernel_size - 1) // 2, | |
| bias=False, | |
| ) | |
| self.norm = torch.nn.LayerNorm(hidden_chans) | |
| self.dropout = torch.nn.Dropout(dropout_rate) | |
| def forward(self, x, ilens=None): | |
| """Calculate forward propagation. | |
| Args: | |
| x (torch.Tensor): Batch of input tensors (B, T, in_chans). | |
| Returns: | |
| torch.Tensor: Batch of output tensors (B, T, out_chans). | |
| """ | |
| x = torch.relu(self.w_1(x.transpose(-1, 1))).transpose(-1, 1) | |
| return ( | |
| self.w_2(self.norm(self.dropout(x)).transpose(-1, 1)).transpose(-1, 1), | |
| ilens, | |
| ) | |
| class Conv1dLinear(torch.nn.Module): | |
| """Conv1D + Linear for Transformer block. | |
| A variant of MultiLayeredConv1d, which replaces second conv-layer to linear. | |
| """ | |
| def __init__(self, in_chans, hidden_chans, kernel_size, dropout_rate): | |
| """Initialize Conv1dLinear module. | |
| Args: | |
| in_chans (int): Number of input channels. | |
| hidden_chans (int): Number of hidden channels. | |
| kernel_size (int): Kernel size of conv1d. | |
| dropout_rate (float): Dropout rate. | |
| """ | |
| super(Conv1dLinear, self).__init__() | |
| self.w_1 = torch.nn.Conv1d( | |
| in_chans, | |
| hidden_chans, | |
| kernel_size, | |
| stride=1, | |
| padding=(kernel_size - 1) // 2, | |
| ) | |
| self.w_2 = torch.nn.Linear(hidden_chans, in_chans) | |
| self.dropout = torch.nn.Dropout(dropout_rate) | |
| def forward(self, x): | |
| """Calculate forward propagation. | |
| Args: | |
| x (torch.Tensor): Batch of input tensors (B, T, in_chans). | |
| Returns: | |
| torch.Tensor: Batch of output tensors (B, T, hidden_chans). | |
| """ | |
| x = torch.relu(self.w_1(x.transpose(-1, 1))).transpose(-1, 1) | |
| return self.w_2(self.dropout(x)) | |