Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,1401 +1,141 @@
|
|
| 1 |
-
import requests
|
| 2 |
-
from bs4 import BeautifulSoup
|
| 3 |
-
from abc import ABC, abstractmethod
|
| 4 |
-
from pathlib import Path
|
| 5 |
-
from langdetect import detect as get_language
|
| 6 |
-
from typing import Any, Dict, List, Optional, Union
|
| 7 |
-
from collections import namedtuple
|
| 8 |
-
from inspect import signature
|
| 9 |
-
import os
|
| 10 |
-
import subprocess
|
| 11 |
-
import logging
|
| 12 |
-
import re
|
| 13 |
-
import random
|
| 14 |
-
from string import ascii_letters, digits, punctuation
|
| 15 |
-
import requests
|
| 16 |
-
import sys
|
| 17 |
-
import warnings
|
| 18 |
-
import time
|
| 19 |
-
import math
|
| 20 |
-
from pathlib import Path
|
| 21 |
-
from dataclasses import dataclass
|
| 22 |
-
from typing import Any
|
| 23 |
-
import pillow_heif
|
| 24 |
-
import spaces
|
| 25 |
-
import numpy as np
|
| 26 |
-
import numpy.typing as npt
|
| 27 |
-
import torch
|
| 28 |
-
from torch import nn
|
| 29 |
import gradio as gr
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
from
|
| 36 |
-
from refiners.fluxion.utils import manual_seed
|
| 37 |
-
from refiners.foundationals.latent_diffusion import Solver, solvers
|
| 38 |
-
from refiners.foundationals.latent_diffusion.stable_diffusion_1.multi_upscaler import (
|
| 39 |
-
MultiUpscaler,
|
| 40 |
-
UpscalerCheckpoints,
|
| 41 |
-
)
|
| 42 |
-
from datetime import datetime
|
| 43 |
-
|
| 44 |
-
model = T5ForConditionalGeneration.from_pretrained("t5-large")
|
| 45 |
-
tokenizer = T5Tokenizer.from_pretrained("t5-large")
|
| 46 |
-
|
| 47 |
-
def log(msg):
|
| 48 |
-
print(f'{datetime.now().time()} {msg}')
|
| 49 |
-
|
| 50 |
-
Tile = tuple[int, int, Image.Image]
|
| 51 |
-
Tiles = list[tuple[int, int, list[Tile]]]
|
| 52 |
-
|
| 53 |
-
def conv_block(in_nc: int, out_nc: int) -> nn.Sequential:
|
| 54 |
-
return nn.Sequential(
|
| 55 |
-
nn.Conv2d(in_nc, out_nc, kernel_size=3, padding=1),
|
| 56 |
-
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
| 57 |
-
)
|
| 58 |
-
|
| 59 |
-
class ResidualDenseBlock_5C(nn.Module):
|
| 60 |
-
"""
|
| 61 |
-
Residual Dense Block
|
| 62 |
-
The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
|
| 63 |
-
Modified options that can be used:
|
| 64 |
-
- "Partial Convolution based Padding" arXiv:1811.11718
|
| 65 |
-
- "Spectral normalization" arXiv:1802.05957
|
| 66 |
-
- "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
|
| 67 |
-
{Rakotonirina} and A. {Rasoanaivo}
|
| 68 |
-
"""
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
self.conv3 = conv_block(nf + 2 * gc, gc)
|
| 76 |
-
self.conv4 = conv_block(nf + 3 * gc, gc)
|
| 77 |
-
# Wrapped in Sequential because of key in state dict.
|
| 78 |
-
self.conv5 = nn.Sequential(nn.Conv2d(nf + 4 * gc, nf, kernel_size=3, padding=1))
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
x2 = self.conv2(torch.cat((x, x1), 1))
|
| 83 |
-
x3 = self.conv3(torch.cat((x, x1, x2), 1))
|
| 84 |
-
x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
|
| 85 |
-
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
| 86 |
-
return x5 * 0.2 + x
|
| 87 |
|
|
|
|
|
|
|
| 88 |
|
| 89 |
-
|
| 90 |
-
"""
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
"""
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
super().__init__() # type: ignore[reportUnknownMemberType]
|
| 97 |
-
self.RDB1 = ResidualDenseBlock_5C(nf)
|
| 98 |
-
self.RDB2 = ResidualDenseBlock_5C(nf)
|
| 99 |
-
self.RDB3 = ResidualDenseBlock_5C(nf)
|
| 100 |
-
|
| 101 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 102 |
-
out = self.RDB1(x)
|
| 103 |
-
out = self.RDB2(out)
|
| 104 |
-
out = self.RDB3(out)
|
| 105 |
-
return out * 0.2 + x
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
class Upsample2x(nn.Module):
|
| 109 |
-
"""Upsample 2x."""
|
| 110 |
-
|
| 111 |
-
def __init__(self) -> None:
|
| 112 |
-
super().__init__() # type: ignore[reportUnknownMemberType]
|
| 113 |
-
|
| 114 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 115 |
-
return nn.functional.interpolate(x, scale_factor=2.0) # type: ignore
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
class ShortcutBlock(nn.Module):
|
| 119 |
-
"""Elementwise sum the output of a submodule to its input"""
|
| 120 |
-
|
| 121 |
-
def __init__(self, submodule: nn.Module) -> None:
|
| 122 |
-
super().__init__() # type: ignore[reportUnknownMemberType]
|
| 123 |
-
self.sub = submodule
|
| 124 |
-
|
| 125 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 126 |
-
return x + self.sub(x)
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
class RRDBNet(nn.Module):
|
| 130 |
-
def __init__(self, in_nc: int, out_nc: int, nf: int, nb: int) -> None:
|
| 131 |
-
super().__init__() # type: ignore[reportUnknownMemberType]
|
| 132 |
-
assert in_nc % 4 != 0 # in_nc is 3
|
| 133 |
-
|
| 134 |
-
self.model = nn.Sequential(
|
| 135 |
-
nn.Conv2d(in_nc, nf, kernel_size=3, padding=1),
|
| 136 |
-
ShortcutBlock(
|
| 137 |
-
nn.Sequential(
|
| 138 |
-
*(RRDB(nf) for _ in range(nb)),
|
| 139 |
-
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
|
| 140 |
-
)
|
| 141 |
-
),
|
| 142 |
-
Upsample2x(),
|
| 143 |
-
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
|
| 144 |
-
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
| 145 |
-
Upsample2x(),
|
| 146 |
-
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
|
| 147 |
-
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
| 148 |
-
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
|
| 149 |
-
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
| 150 |
-
nn.Conv2d(nf, out_nc, kernel_size=3, padding=1),
|
| 151 |
-
)
|
| 152 |
-
|
| 153 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 154 |
-
return self.model(x)
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
def infer_params(state_dict: dict[str, torch.Tensor]) -> tuple[int, int, int, int, int]:
|
| 158 |
-
# this code is adapted from https://github.com/victorca25/iNNfer
|
| 159 |
-
scale2x = 0
|
| 160 |
-
scalemin = 6
|
| 161 |
-
n_uplayer = 0
|
| 162 |
-
out_nc = 0
|
| 163 |
-
nb = 0
|
| 164 |
-
|
| 165 |
-
for block in list(state_dict):
|
| 166 |
-
parts = block.split(".")
|
| 167 |
-
n_parts = len(parts)
|
| 168 |
-
if n_parts == 5 and parts[2] == "sub":
|
| 169 |
-
nb = int(parts[3])
|
| 170 |
-
elif n_parts == 3:
|
| 171 |
-
part_num = int(parts[1])
|
| 172 |
-
if part_num > scalemin and parts[0] == "model" and parts[2] == "weight":
|
| 173 |
-
scale2x += 1
|
| 174 |
-
if part_num > n_uplayer:
|
| 175 |
-
n_uplayer = part_num
|
| 176 |
-
out_nc = state_dict[block].shape[0]
|
| 177 |
-
assert "conv1x1" not in block # no ESRGANPlus
|
| 178 |
-
|
| 179 |
-
nf = state_dict["model.0.weight"].shape[0]
|
| 180 |
-
in_nc = state_dict["model.0.weight"].shape[1]
|
| 181 |
-
scale = 2**scale2x
|
| 182 |
-
|
| 183 |
-
assert out_nc > 0
|
| 184 |
-
assert nb > 0
|
| 185 |
-
|
| 186 |
-
return in_nc, out_nc, nf, nb, scale # 3, 3, 64, 23, 4
|
| 187 |
-
|
| 188 |
-
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L64
|
| 189 |
-
Grid = namedtuple("Grid", ["tiles", "tile_w", "tile_h", "image_w", "image_h", "overlap"])
|
| 190 |
-
|
| 191 |
-
# adapted from https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L67
|
| 192 |
-
def split_grid(image: Image.Image, tile_w: int = 512, tile_h: int = 512, overlap: int = 64) -> Grid:
|
| 193 |
-
w = image.width
|
| 194 |
-
h = image.height
|
| 195 |
-
|
| 196 |
-
non_overlap_width = tile_w - overlap
|
| 197 |
-
non_overlap_height = tile_h - overlap
|
| 198 |
-
|
| 199 |
-
cols = max(1, math.ceil((w - overlap) / non_overlap_width))
|
| 200 |
-
rows = max(1, math.ceil((h - overlap) / non_overlap_height))
|
| 201 |
-
|
| 202 |
-
dx = (w - tile_w) / (cols - 1) if cols > 1 else 0
|
| 203 |
-
dy = (h - tile_h) / (rows - 1) if rows > 1 else 0
|
| 204 |
-
|
| 205 |
-
grid = Grid([], tile_w, tile_h, w, h, overlap)
|
| 206 |
-
for row in range(rows):
|
| 207 |
-
row_images: list[Tile] = []
|
| 208 |
-
y1 = max(min(int(row * dy), h - tile_h), 0)
|
| 209 |
-
y2 = min(y1 + tile_h, h)
|
| 210 |
-
for col in range(cols):
|
| 211 |
-
x1 = max(min(int(col * dx), w - tile_w), 0)
|
| 212 |
-
x2 = min(x1 + tile_w, w)
|
| 213 |
-
tile = image.crop((x1, y1, x2, y2))
|
| 214 |
-
row_images.append((x1, tile_w, tile))
|
| 215 |
-
grid.tiles.append((y1, tile_h, row_images))
|
| 216 |
-
|
| 217 |
-
return grid
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L104
|
| 221 |
-
def combine_grid(grid: Grid):
|
| 222 |
-
def make_mask_image(r: npt.NDArray[np.float32]) -> Image.Image:
|
| 223 |
-
r = r * 255 / grid.overlap
|
| 224 |
-
return Image.fromarray(r.astype(np.uint8), "L")
|
| 225 |
-
|
| 226 |
-
mask_w = make_mask_image(
|
| 227 |
-
np.arange(grid.overlap, dtype=np.float32).reshape((1, grid.overlap)).repeat(grid.tile_h, axis=0)
|
| 228 |
-
)
|
| 229 |
-
mask_h = make_mask_image(
|
| 230 |
-
np.arange(grid.overlap, dtype=np.float32).reshape((grid.overlap, 1)).repeat(grid.image_w, axis=1)
|
| 231 |
-
)
|
| 232 |
-
|
| 233 |
-
combined_image = Image.new("RGB", (grid.image_w, grid.image_h))
|
| 234 |
-
for y, h, row in grid.tiles:
|
| 235 |
-
combined_row = Image.new("RGB", (grid.image_w, h))
|
| 236 |
-
for x, w, tile in row:
|
| 237 |
-
if x == 0:
|
| 238 |
-
combined_row.paste(tile, (0, 0))
|
| 239 |
-
continue
|
| 240 |
-
|
| 241 |
-
combined_row.paste(tile.crop((0, 0, grid.overlap, h)), (x, 0), mask=mask_w)
|
| 242 |
-
combined_row.paste(tile.crop((grid.overlap, 0, w, h)), (x + grid.overlap, 0))
|
| 243 |
-
|
| 244 |
-
if y == 0:
|
| 245 |
-
combined_image.paste(combined_row, (0, 0))
|
| 246 |
-
continue
|
| 247 |
-
|
| 248 |
-
combined_image.paste(
|
| 249 |
-
combined_row.crop((0, 0, combined_row.width, grid.overlap)),
|
| 250 |
-
(0, y),
|
| 251 |
-
mask=mask_h,
|
| 252 |
-
)
|
| 253 |
-
combined_image.paste(
|
| 254 |
-
combined_row.crop((0, grid.overlap, combined_row.width, h)),
|
| 255 |
-
(0, y + grid.overlap),
|
| 256 |
-
)
|
| 257 |
-
|
| 258 |
-
return combined_image
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
class UpscalerESRGAN:
|
| 262 |
-
def __init__(self, model_path: Path, device: torch.device, dtype: torch.dtype):
|
| 263 |
-
self.model_path = model_path
|
| 264 |
-
self.device = device
|
| 265 |
-
self.model = self.load_model(model_path)
|
| 266 |
-
self.to(device, dtype)
|
| 267 |
-
|
| 268 |
-
def __call__(self, img: Image.Image) -> Image.Image:
|
| 269 |
-
return self.upscale_without_tiling(img)
|
| 270 |
-
|
| 271 |
-
def to(self, device: torch.device, dtype: torch.dtype):
|
| 272 |
-
self.device = device
|
| 273 |
-
self.dtype = dtype
|
| 274 |
-
self.model.to(device=device, dtype=dtype)
|
| 275 |
-
|
| 276 |
-
def load_model(self, path: Path) -> RRDBNet:
|
| 277 |
-
filename = path
|
| 278 |
-
state_dict: dict[str, torch.Tensor] = torch.load(filename, weights_only=True, map_location=self.device) # type: ignore
|
| 279 |
-
in_nc, out_nc, nf, nb, upscale = infer_params(state_dict)
|
| 280 |
-
assert upscale == 4, "Only 4x upscaling is supported"
|
| 281 |
-
model = RRDBNet(in_nc=in_nc, out_nc=out_nc, nf=nf, nb=nb)
|
| 282 |
-
model.load_state_dict(state_dict)
|
| 283 |
-
model.eval()
|
| 284 |
-
|
| 285 |
-
return model
|
| 286 |
-
|
| 287 |
-
def upscale_without_tiling(self, img: Image.Image) -> Image.Image:
|
| 288 |
-
img_np = np.array(img)
|
| 289 |
-
img_np = img_np[:, :, ::-1]
|
| 290 |
-
img_np = np.ascontiguousarray(np.transpose(img_np, (2, 0, 1))) / 255
|
| 291 |
-
img_t = torch.from_numpy(img_np).float() # type: ignore
|
| 292 |
-
img_t = img_t.unsqueeze(0).to(device=self.device, dtype=self.dtype)
|
| 293 |
-
with torch.no_grad():
|
| 294 |
-
output = self.model(img_t)
|
| 295 |
-
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
| 296 |
-
output = 255.0 * np.moveaxis(output, 0, 2)
|
| 297 |
-
output = output.astype(np.uint8)
|
| 298 |
-
output = output[:, :, ::-1]
|
| 299 |
-
return Image.fromarray(output, "RGB")
|
| 300 |
-
|
| 301 |
-
def upscale_with_tiling(self, img: Image.Image) -> Image.Image:
|
| 302 |
-
img = img.convert("RGB")
|
| 303 |
-
grid = split_grid(img)
|
| 304 |
-
newtiles: Tiles = []
|
| 305 |
-
scale_factor: int = 1
|
| 306 |
-
|
| 307 |
-
for y, h, row in grid.tiles:
|
| 308 |
-
newrow: list[Tile] = []
|
| 309 |
-
for tiledata in row:
|
| 310 |
-
x, w, tile = tiledata
|
| 311 |
-
output = self.upscale_without_tiling(tile)
|
| 312 |
-
scale_factor = output.width // tile.width
|
| 313 |
-
newrow.append((x * scale_factor, w * scale_factor, output))
|
| 314 |
-
newtiles.append((y * scale_factor, h * scale_factor, newrow))
|
| 315 |
-
|
| 316 |
-
newgrid = Grid(
|
| 317 |
-
newtiles,
|
| 318 |
-
grid.tile_w * scale_factor,
|
| 319 |
-
grid.tile_h * scale_factor,
|
| 320 |
-
grid.image_w * scale_factor,
|
| 321 |
-
grid.image_h * scale_factor,
|
| 322 |
-
grid.overlap * scale_factor,
|
| 323 |
-
)
|
| 324 |
-
output = combine_grid(newgrid)
|
| 325 |
-
return output
|
| 326 |
-
|
| 327 |
-
@dataclass(kw_only=True)
|
| 328 |
-
class ESRGANUpscalerCheckpoints(UpscalerCheckpoints):
|
| 329 |
-
esrgan: Path
|
| 330 |
-
|
| 331 |
-
class ESRGANUpscaler(MultiUpscaler):
|
| 332 |
-
def __init__(
|
| 333 |
-
self,
|
| 334 |
-
checkpoints: ESRGANUpscalerCheckpoints,
|
| 335 |
-
device: torch.device,
|
| 336 |
-
dtype: torch.dtype,
|
| 337 |
-
) -> None:
|
| 338 |
-
super().__init__(checkpoints=checkpoints, device=device, dtype=dtype)
|
| 339 |
-
self.esrgan = UpscalerESRGAN(checkpoints.esrgan, device=self.device, dtype=self.dtype)
|
| 340 |
-
|
| 341 |
-
def to(self, device: torch.device, dtype: torch.dtype):
|
| 342 |
-
self.esrgan.to(device=device, dtype=dtype)
|
| 343 |
-
self.sd = self.sd.to(device=device, dtype=dtype)
|
| 344 |
-
self.device = device
|
| 345 |
-
self.dtype = dtype
|
| 346 |
-
|
| 347 |
-
def pre_upscale(self, image: Image.Image, upscale_factor: float, **_: Any) -> Image.Image:
|
| 348 |
-
image = self.esrgan.upscale_with_tiling(image)
|
| 349 |
-
return super().pre_upscale(image=image, upscale_factor=upscale_factor / 4)
|
| 350 |
-
|
| 351 |
-
pillow_heif.register_heif_opener()
|
| 352 |
-
pillow_heif.register_avif_opener()
|
| 353 |
-
|
| 354 |
-
CHECKPOINTS = ESRGANUpscalerCheckpoints(
|
| 355 |
-
unet=Path(
|
| 356 |
-
hf_hub_download(
|
| 357 |
-
repo_id="refiners/juggernaut.reborn.sd1_5.unet",
|
| 358 |
-
filename="model.safetensors",
|
| 359 |
-
revision="347d14c3c782c4959cc4d1bb1e336d19f7dda4d2",
|
| 360 |
-
)
|
| 361 |
-
),
|
| 362 |
-
clip_text_encoder=Path(
|
| 363 |
-
hf_hub_download(
|
| 364 |
-
repo_id="refiners/juggernaut.reborn.sd1_5.text_encoder",
|
| 365 |
-
filename="model.safetensors",
|
| 366 |
-
revision="744ad6a5c0437ec02ad826df9f6ede102bb27481",
|
| 367 |
-
)
|
| 368 |
-
),
|
| 369 |
-
lda=Path(
|
| 370 |
-
hf_hub_download(
|
| 371 |
-
repo_id="refiners/juggernaut.reborn.sd1_5.autoencoder",
|
| 372 |
-
filename="model.safetensors",
|
| 373 |
-
revision="3c1aae3fc3e03e4a2b7e0fa42b62ebb64f1a4c19",
|
| 374 |
-
)
|
| 375 |
-
),
|
| 376 |
-
controlnet_tile=Path(
|
| 377 |
-
hf_hub_download(
|
| 378 |
-
repo_id="refiners/controlnet.sd1_5.tile",
|
| 379 |
-
filename="model.safetensors",
|
| 380 |
-
revision="48ced6ff8bfa873a8976fa467c3629a240643387",
|
| 381 |
-
)
|
| 382 |
-
),
|
| 383 |
-
esrgan=Path(
|
| 384 |
-
hf_hub_download(
|
| 385 |
-
repo_id="philz1337x/upscaler",
|
| 386 |
-
filename="4x-UltraSharp.pth",
|
| 387 |
-
revision="011deacac8270114eb7d2eeff4fe6fa9a837be70",
|
| 388 |
-
)
|
| 389 |
-
),
|
| 390 |
-
negative_embedding=Path(
|
| 391 |
-
hf_hub_download(
|
| 392 |
-
repo_id="philz1337x/embeddings",
|
| 393 |
-
filename="JuggernautNegative-neg.pt",
|
| 394 |
-
revision="203caa7e9cc2bc225031a4021f6ab1ded283454a",
|
| 395 |
-
)
|
| 396 |
-
),
|
| 397 |
-
negative_embedding_key="string_to_param.*",
|
| 398 |
-
loras={
|
| 399 |
-
"more_details": Path(
|
| 400 |
-
hf_hub_download(
|
| 401 |
-
repo_id="philz1337x/loras",
|
| 402 |
-
filename="more_details.safetensors",
|
| 403 |
-
revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
|
| 404 |
-
)
|
| 405 |
-
),
|
| 406 |
-
"sdxl_render": Path(
|
| 407 |
-
hf_hub_download(
|
| 408 |
-
repo_id="philz1337x/loras",
|
| 409 |
-
filename="SDXLrender_v2.0.safetensors",
|
| 410 |
-
revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
|
| 411 |
-
)
|
| 412 |
-
)
|
| 413 |
-
}
|
| 414 |
-
)
|
| 415 |
-
|
| 416 |
-
device = DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 417 |
-
DTYPE = dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
| 418 |
-
|
| 419 |
-
enhancer = ESRGANUpscaler(checkpoints=CHECKPOINTS, device=device, dtype=DTYPE)
|
| 420 |
-
|
| 421 |
-
# logging
|
| 422 |
-
|
| 423 |
-
warnings.filterwarnings("ignore")
|
| 424 |
-
root = logging.getLogger()
|
| 425 |
-
root.setLevel(logging.WARN)
|
| 426 |
-
handler = logging.StreamHandler(sys.stderr)
|
| 427 |
-
handler.setLevel(logging.WARN)
|
| 428 |
-
formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n')
|
| 429 |
-
handler.setFormatter(formatter)
|
| 430 |
-
root.addHandler(handler)
|
| 431 |
-
|
| 432 |
-
# constant data
|
| 433 |
-
|
| 434 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 435 |
-
|
| 436 |
-
# precision data
|
| 437 |
-
|
| 438 |
-
seq=512
|
| 439 |
-
image_steps=40
|
| 440 |
-
img_accu=6.5
|
| 441 |
-
|
| 442 |
-
# ui data
|
| 443 |
-
|
| 444 |
-
css="".join(["""
|
| 445 |
-
input, textarea, input::placeholder, textarea::placeholder {
|
| 446 |
-
text-align: center !important;
|
| 447 |
-
}
|
| 448 |
-
*, *::placeholder {
|
| 449 |
-
font-family: Suez One !important;
|
| 450 |
-
}
|
| 451 |
-
h1,h2,h3,h4,h5,h6 {
|
| 452 |
-
width: 100%;
|
| 453 |
-
text-align: center;
|
| 454 |
-
}
|
| 455 |
-
footer {
|
| 456 |
-
display: none !important;
|
| 457 |
-
}
|
| 458 |
-
.image-container {
|
| 459 |
-
aspect-ratio: 1/1 !important;
|
| 460 |
-
border: 2mm ridge black !important;
|
| 461 |
-
}
|
| 462 |
-
.dropdown-arrow {
|
| 463 |
-
display: none !important;
|
| 464 |
-
}
|
| 465 |
-
*:has(>.btn) {
|
| 466 |
-
display: flex;
|
| 467 |
-
justify-content: space-evenly;
|
| 468 |
-
align-items: center;
|
| 469 |
-
}
|
| 470 |
-
.btn {
|
| 471 |
-
display: flex;
|
| 472 |
-
}
|
| 473 |
-
|
| 474 |
-
/* Added background gradient for a more colorful look */
|
| 475 |
-
.gradio-container {
|
| 476 |
-
background: linear-gradient(to right, #ffecd2, #fcb69f) !important;
|
| 477 |
-
}
|
| 478 |
-
"""])
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
# torch pipes
|
| 482 |
-
|
| 483 |
-
image_pipe = DiffusionPipeline.from_pretrained("ostris/Flex.1-alpha", torch_dtype=dtype).to(device)
|
| 484 |
-
image_pipe.enable_model_cpu_offload()
|
| 485 |
-
|
| 486 |
-
torch.cuda.empty_cache()
|
| 487 |
-
|
| 488 |
-
# functionality
|
| 489 |
-
|
| 490 |
-
@spaces.GPU(duration=300)
|
| 491 |
-
def hard_scaler(img):
|
| 492 |
-
return upscaler(img)
|
| 493 |
-
|
| 494 |
-
@spaces.GPU(duration=150)
|
| 495 |
-
def easy_scaler(img):
|
| 496 |
-
return upscaler(img)
|
| 497 |
-
|
| 498 |
-
def handle_upscaler(img):
|
| 499 |
-
w, h = img.size
|
| 500 |
-
if w*h > 2 * (10 ** 6):
|
| 501 |
-
return hard_scaler(img)
|
| 502 |
-
return easy_scaler(img)
|
| 503 |
-
|
| 504 |
-
def upscaler(
|
| 505 |
-
input_image: Image.Image,
|
| 506 |
-
prompt: str = "Accurate, Highly Detailed, Realistic, Best Quality, Hyper-Realistic, Super-Realistic, Natural, Reasonable, Logical.",
|
| 507 |
-
negative_prompt: str = "Unreal, Exceptional, Irregular, Unusual, Blurry, Smoothed, Polished, Worst Quality, Worse Quality, Normal Quality, Painted, Movies Quality.",
|
| 508 |
-
seed: int = random.randint(0, MAX_SEED),
|
| 509 |
-
upscale_factor: int = 2,
|
| 510 |
-
controlnet_scale: float = 0.6,
|
| 511 |
-
controlnet_decay: float = 1.0,
|
| 512 |
-
condition_scale: int = 6,
|
| 513 |
-
tile_width: int = 112,
|
| 514 |
-
tile_height: int = 144,
|
| 515 |
-
denoise_strength: float = 0.35,
|
| 516 |
-
num_inference_steps: int = 20,
|
| 517 |
-
solver: str = "DDIM",
|
| 518 |
-
) -> Image.Image:
|
| 519 |
-
|
| 520 |
-
log(f'CALL upscaler')
|
| 521 |
-
|
| 522 |
-
manual_seed(seed)
|
| 523 |
-
solver_type: type[Solver] = getattr(solvers, solver)
|
| 524 |
-
|
| 525 |
-
log(f'DBG upscaler 1')
|
| 526 |
-
|
| 527 |
-
enhanced_image = enhancer.upscale(
|
| 528 |
-
image=input_image,
|
| 529 |
-
prompt=prompt,
|
| 530 |
-
negative_prompt=negative_prompt,
|
| 531 |
-
upscale_factor=upscale_factor,
|
| 532 |
-
controlnet_scale=controlnet_scale,
|
| 533 |
-
controlnet_scale_decay=controlnet_decay,
|
| 534 |
-
condition_scale=condition_scale,
|
| 535 |
-
tile_size=(tile_height, tile_width),
|
| 536 |
-
denoise_strength=denoise_strength,
|
| 537 |
-
num_inference_steps=num_inference_steps,
|
| 538 |
-
loras_scale={"more_details": 0.5, "sdxl_render": 1.0},
|
| 539 |
-
solver_type=solver_type,
|
| 540 |
-
)
|
| 541 |
-
|
| 542 |
-
log(f'RET upscaler')
|
| 543 |
-
return enhanced_image
|
| 544 |
-
|
| 545 |
-
def get_tensor_length(tensor):
|
| 546 |
-
nums = list(tensor.size())
|
| 547 |
-
ret = 1
|
| 548 |
-
for num in nums:
|
| 549 |
-
ret *= num
|
| 550 |
-
return ret
|
| 551 |
-
|
| 552 |
-
def _summarize(text):
|
| 553 |
-
log(f'CALL _summarize')
|
| 554 |
-
prefix = "summarize: "
|
| 555 |
-
toks = tokenizer.encode(prefix + text, return_tensors="pt", truncation=False)
|
| 556 |
-
gen = model.generate(
|
| 557 |
-
toks,
|
| 558 |
-
length_penalty=0.1,
|
| 559 |
-
num_beams=6,
|
| 560 |
-
early_stopping=True,
|
| 561 |
-
max_length=512
|
| 562 |
-
)
|
| 563 |
-
ret = tokenizer.decode(gen[0], skip_special_tokens=True)
|
| 564 |
-
log(f'RET _summarize with ret as {ret}')
|
| 565 |
-
return ret
|
| 566 |
-
|
| 567 |
-
def summarize(text, max_words=100):
|
| 568 |
-
log(f'CALL summarize')
|
| 569 |
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
if words_length >= 510:
|
| 574 |
-
while words_length >= 510:
|
| 575 |
-
words = text.split()
|
| 576 |
-
summ = _summarize(" ".join(words[0:510])) + " ".join(words[510:])
|
| 577 |
-
if summ == text:
|
| 578 |
-
return text
|
| 579 |
-
text = summ
|
| 580 |
-
words_length = len(text.split())
|
| 581 |
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
words_length = len(text.split())
|
| 588 |
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
w, h = img.size
|
| 598 |
-
draw = ImageDraw.Draw(img,mode="RGBA")
|
| 599 |
-
|
| 600 |
-
labels_distance = 1/3
|
| 601 |
-
|
| 602 |
-
if top_title:
|
| 603 |
-
rows = len(top_title.split("\n"))
|
| 604 |
-
textheight=min(math.ceil( w / 10 ), math.ceil( h / 5 ))
|
| 605 |
-
font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
|
| 606 |
-
textwidth = draw.textlength(top_title,font)
|
| 607 |
-
x = math.ceil((w - textwidth) / 2)
|
| 608 |
-
y = h - (textheight * rows / 2) - (h / 2)
|
| 609 |
-
y = math.ceil(y - (h / 2 * labels_distance))
|
| 610 |
-
draw.text(
|
| 611 |
-
(x, y),
|
| 612 |
-
top_title,
|
| 613 |
-
(255,255,255),
|
| 614 |
-
font=font,
|
| 615 |
-
spacing=2,
|
| 616 |
-
stroke_width=math.ceil(textheight/20),
|
| 617 |
-
stroke_fill=(0,0,0)
|
| 618 |
-
)
|
| 619 |
-
|
| 620 |
-
if bottom_title:
|
| 621 |
-
rows = len(bottom_title.split("\n"))
|
| 622 |
-
textheight=min(math.ceil( w / 10 ), math.ceil( h / 5 ))
|
| 623 |
-
font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
|
| 624 |
-
textwidth = draw.textlength(bottom_title,font)
|
| 625 |
-
x = math.ceil((w - textwidth) / 2)
|
| 626 |
-
y = h - (textheight * rows / 2) - (h / 2)
|
| 627 |
-
y = math.ceil(y + (h / 2 * labels_distance))
|
| 628 |
-
draw.text(
|
| 629 |
-
(x, y),
|
| 630 |
-
bottom_title,
|
| 631 |
-
(0,0,0),
|
| 632 |
-
font=font,
|
| 633 |
-
spacing=2,
|
| 634 |
-
stroke_width=math.ceil(textheight/20),
|
| 635 |
-
stroke_fill=(255,255,255)
|
| 636 |
-
)
|
| 637 |
|
| 638 |
-
return
|
| 639 |
-
|
| 640 |
-
# Modified parts from https://github.com/nidhaloff/deep-translator:
|
| 641 |
-
|
| 642 |
-
google_translate_endpoint = "https://translate.google.com/m"
|
| 643 |
-
language_codes = {
|
| 644 |
-
"afrikaans": "af",
|
| 645 |
-
"albanian": "sq",
|
| 646 |
-
"amharic": "am",
|
| 647 |
-
"arabic": "ar",
|
| 648 |
-
"armenian": "hy",
|
| 649 |
-
"assamese": "as",
|
| 650 |
-
"aymara": "ay",
|
| 651 |
-
"azerbaijani": "az",
|
| 652 |
-
"bambara": "bm",
|
| 653 |
-
"basque": "eu",
|
| 654 |
-
"belarusian": "be",
|
| 655 |
-
"bengali": "bn",
|
| 656 |
-
"bhojpuri": "bho",
|
| 657 |
-
"bosnian": "bs",
|
| 658 |
-
"bulgarian": "bg",
|
| 659 |
-
"catalan": "ca",
|
| 660 |
-
"cebuano": "ceb",
|
| 661 |
-
"chichewa": "ny",
|
| 662 |
-
"chinese (simplified)": "zh-CN",
|
| 663 |
-
"chinese (traditional)": "zh-TW",
|
| 664 |
-
"corsican": "co",
|
| 665 |
-
"croatian": "hr",
|
| 666 |
-
"czech": "cs",
|
| 667 |
-
"danish": "da",
|
| 668 |
-
"dhivehi": "dv",
|
| 669 |
-
"dogri": "doi",
|
| 670 |
-
"dutch": "nl",
|
| 671 |
-
"english": "en",
|
| 672 |
-
"esperanto": "eo",
|
| 673 |
-
"estonian": "et",
|
| 674 |
-
"ewe": "ee",
|
| 675 |
-
"filipino": "tl",
|
| 676 |
-
"finnish": "fi",
|
| 677 |
-
"french": "fr",
|
| 678 |
-
"frisian": "fy",
|
| 679 |
-
"galician": "gl",
|
| 680 |
-
"georgian": "ka",
|
| 681 |
-
"german": "de",
|
| 682 |
-
"greek": "el",
|
| 683 |
-
"guarani": "gn",
|
| 684 |
-
"gujarati": "gu",
|
| 685 |
-
"haitian creole": "ht",
|
| 686 |
-
"hausa": "ha",
|
| 687 |
-
"hawaiian": "haw",
|
| 688 |
-
"hebrew": "iw",
|
| 689 |
-
"hindi": "hi",
|
| 690 |
-
"hmong": "hmn",
|
| 691 |
-
"hungarian": "hu",
|
| 692 |
-
"icelandic": "is",
|
| 693 |
-
"igbo": "ig",
|
| 694 |
-
"ilocano": "ilo",
|
| 695 |
-
"indonesian": "id",
|
| 696 |
-
"irish": "ga",
|
| 697 |
-
"italian": "it",
|
| 698 |
-
"japanese": "ja",
|
| 699 |
-
"javanese": "jw",
|
| 700 |
-
"kannada": "kn",
|
| 701 |
-
"kazakh": "kk",
|
| 702 |
-
"khmer": "km",
|
| 703 |
-
"kinyarwanda": "rw",
|
| 704 |
-
"konkani": "gom",
|
| 705 |
-
"korean": "ko",
|
| 706 |
-
"krio": "kri",
|
| 707 |
-
"kurdish (kurmanji)": "ku",
|
| 708 |
-
"kurdish (sorani)": "ckb",
|
| 709 |
-
"kyrgyz": "ky",
|
| 710 |
-
"lao": "lo",
|
| 711 |
-
"latin": "la",
|
| 712 |
-
"latvian": "lv",
|
| 713 |
-
"lingala": "ln",
|
| 714 |
-
"lithuanian": "lt",
|
| 715 |
-
"luganda": "lg",
|
| 716 |
-
"luxembourgish": "lb",
|
| 717 |
-
"macedonian": "mk",
|
| 718 |
-
"maithili": "mai",
|
| 719 |
-
"malagasy": "mg",
|
| 720 |
-
"malay": "ms",
|
| 721 |
-
"malayalam": "ml",
|
| 722 |
-
"maltese": "mt",
|
| 723 |
-
"maori": "mi",
|
| 724 |
-
"marathi": "mr",
|
| 725 |
-
"meiteilon (manipuri)": "mni-Mtei",
|
| 726 |
-
"mizo": "lus",
|
| 727 |
-
"mongolian": "mn",
|
| 728 |
-
"myanmar": "my",
|
| 729 |
-
"nepali": "ne",
|
| 730 |
-
"norwegian": "no",
|
| 731 |
-
"odia (oriya)": "or",
|
| 732 |
-
"oromo": "om",
|
| 733 |
-
"pashto": "ps",
|
| 734 |
-
"persian": "fa",
|
| 735 |
-
"polish": "pl",
|
| 736 |
-
"portuguese": "pt",
|
| 737 |
-
"punjabi": "pa",
|
| 738 |
-
"quechua": "qu",
|
| 739 |
-
"romanian": "ro",
|
| 740 |
-
"russian": "ru",
|
| 741 |
-
"samoan": "sm",
|
| 742 |
-
"sanskrit": "sa",
|
| 743 |
-
"scots gaelic": "gd",
|
| 744 |
-
"sepedi": "nso",
|
| 745 |
-
"serbian": "sr",
|
| 746 |
-
"sesotho": "st",
|
| 747 |
-
"shona": "sn",
|
| 748 |
-
"sindhi": "sd",
|
| 749 |
-
"sinhala": "si",
|
| 750 |
-
"slovak": "sk",
|
| 751 |
-
"slovenian": "sl",
|
| 752 |
-
"somali": "so",
|
| 753 |
-
"spanish": "es",
|
| 754 |
-
"sundanese": "su",
|
| 755 |
-
"swahili": "sw",
|
| 756 |
-
"swedish": "sv",
|
| 757 |
-
"tajik": "tg",
|
| 758 |
-
"tamil": "ta",
|
| 759 |
-
"tatar": "tt",
|
| 760 |
-
"telugu": "te",
|
| 761 |
-
"thai": "th",
|
| 762 |
-
"tigrinya": "ti",
|
| 763 |
-
"tsonga": "ts",
|
| 764 |
-
"turkish": "tr",
|
| 765 |
-
"turkmen": "tk",
|
| 766 |
-
"twi": "ak",
|
| 767 |
-
"ukrainian": "uk",
|
| 768 |
-
"urdu": "ur",
|
| 769 |
-
"uyghur": "ug",
|
| 770 |
-
"uzbek": "uz",
|
| 771 |
-
"vietnamese": "vi",
|
| 772 |
-
"welsh": "cy",
|
| 773 |
-
"xhosa": "xh",
|
| 774 |
-
"yiddish": "yi",
|
| 775 |
-
"yoruba": "yo",
|
| 776 |
-
"zulu": "zu",
|
| 777 |
-
}
|
| 778 |
-
|
| 779 |
-
class BaseError(Exception):
|
| 780 |
-
"""
|
| 781 |
-
base error structure class
|
| 782 |
-
"""
|
| 783 |
-
|
| 784 |
-
def __init__(self, val, message):
|
| 785 |
-
self.val = val
|
| 786 |
-
self.message = message
|
| 787 |
-
super().__init__()
|
| 788 |
-
|
| 789 |
-
def __str__(self):
|
| 790 |
-
return "{} --> {}".format(self.val, self.message)
|
| 791 |
-
|
| 792 |
-
|
| 793 |
-
class LanguageNotSupportedException(BaseError):
|
| 794 |
-
"""
|
| 795 |
-
exception thrown if the user uses a language
|
| 796 |
-
that is not supported by the deep_translator
|
| 797 |
-
"""
|
| 798 |
|
| 799 |
-
|
| 800 |
-
|
| 801 |
-
|
| 802 |
-
|
| 803 |
-
|
| 804 |
-
|
| 805 |
-
|
| 806 |
-
|
| 807 |
-
|
| 808 |
-
"""
|
| 809 |
-
|
| 810 |
-
def __init__(
|
| 811 |
-
self,
|
| 812 |
-
val,
|
| 813 |
-
message="text must be a valid text with maximum 5000 character,"
|
| 814 |
-
"otherwise it cannot be translated",
|
| 815 |
-
):
|
| 816 |
-
super(NotValidPayload, self).__init__(val, message)
|
| 817 |
-
|
| 818 |
-
|
| 819 |
-
class InvalidSourceOrTargetLanguage(BaseError):
|
| 820 |
-
"""
|
| 821 |
-
exception thrown if the user enters an invalid payload
|
| 822 |
-
"""
|
| 823 |
-
|
| 824 |
-
def __init__(self, val, message="Invalid source or target language!"):
|
| 825 |
-
super(InvalidSourceOrTargetLanguage, self).__init__(val, message)
|
| 826 |
-
|
| 827 |
-
|
| 828 |
-
class TranslationNotFound(BaseError):
|
| 829 |
-
"""
|
| 830 |
-
exception thrown if no translation was found for the text provided by the user
|
| 831 |
-
"""
|
| 832 |
-
|
| 833 |
-
def __init__(
|
| 834 |
-
self,
|
| 835 |
-
val,
|
| 836 |
-
message="No translation was found using the current translator. Try another translator?",
|
| 837 |
-
):
|
| 838 |
-
super(TranslationNotFound, self).__init__(val, message)
|
| 839 |
-
|
| 840 |
-
|
| 841 |
-
class ElementNotFoundInGetRequest(BaseError):
|
| 842 |
-
"""
|
| 843 |
-
exception thrown if the html element was not found in the body parsed by beautifulsoup
|
| 844 |
-
"""
|
| 845 |
-
|
| 846 |
-
def __init__(
|
| 847 |
-
self, val, message="Required element was not found in the API response"
|
| 848 |
-
):
|
| 849 |
-
super(ElementNotFoundInGetRequest, self).__init__(val, message)
|
| 850 |
-
|
| 851 |
-
|
| 852 |
-
class NotValidLength(BaseError):
|
| 853 |
-
"""
|
| 854 |
-
exception thrown if the provided text exceed the length limit of the translator
|
| 855 |
-
"""
|
| 856 |
-
|
| 857 |
-
def __init__(self, val, min_chars, max_chars):
|
| 858 |
-
message = f"Text length need to be between {min_chars} and {max_chars} characters"
|
| 859 |
-
super(NotValidLength, self).__init__(val, message)
|
| 860 |
-
|
| 861 |
-
|
| 862 |
-
class RequestError(Exception):
|
| 863 |
-
"""
|
| 864 |
-
exception thrown if an error occurred during the request call, e.g a connection problem.
|
| 865 |
-
"""
|
| 866 |
-
|
| 867 |
-
def __init__(
|
| 868 |
-
self,
|
| 869 |
-
message="Request exception can happen due to an api connection error. "
|
| 870 |
-
"Please check your connection and try again",
|
| 871 |
-
):
|
| 872 |
-
self.message = message
|
| 873 |
-
|
| 874 |
-
def __str__(self):
|
| 875 |
-
return self.message
|
| 876 |
-
|
| 877 |
-
|
| 878 |
-
class TooManyRequests(Exception):
|
| 879 |
-
"""
|
| 880 |
-
exception thrown if an error occurred during the request call, e.g a connection problem.
|
| 881 |
-
"""
|
| 882 |
-
|
| 883 |
-
def __init__(
|
| 884 |
-
self,
|
| 885 |
-
message="Server Error: You made too many requests to the server."
|
| 886 |
-
"According to google, you are allowed to make 5 requests per second"
|
| 887 |
-
"and up to 200k requests per day. You can wait and try again later or"
|
| 888 |
-
"you can try the translate_batch function",
|
| 889 |
-
):
|
| 890 |
-
self.message = message
|
| 891 |
-
|
| 892 |
-
def __str__(self):
|
| 893 |
-
return self.message
|
| 894 |
-
|
| 895 |
-
|
| 896 |
-
class ServerException(Exception):
|
| 897 |
-
"""
|
| 898 |
-
Default YandexTranslate exception from the official website
|
| 899 |
-
"""
|
| 900 |
-
|
| 901 |
-
errors = {
|
| 902 |
-
400: "ERR_BAD_REQUEST",
|
| 903 |
-
401: "ERR_KEY_INVALID",
|
| 904 |
-
402: "ERR_KEY_BLOCKED",
|
| 905 |
-
403: "ERR_DAILY_REQ_LIMIT_EXCEEDED",
|
| 906 |
-
404: "ERR_DAILY_CHAR_LIMIT_EXCEEDED",
|
| 907 |
-
413: "ERR_TEXT_TOO_LONG",
|
| 908 |
-
429: "ERR_TOO_MANY_REQUESTS",
|
| 909 |
-
422: "ERR_UNPROCESSABLE_TEXT",
|
| 910 |
-
500: "ERR_INTERNAL_SERVER_ERROR",
|
| 911 |
-
501: "ERR_LANG_NOT_SUPPORTED",
|
| 912 |
-
503: "ERR_SERVICE_NOT_AVAIBLE",
|
| 913 |
-
}
|
| 914 |
-
|
| 915 |
-
def __init__(self, status_code, *args):
|
| 916 |
-
message = self.errors.get(status_code, "API server error")
|
| 917 |
-
super(ServerException, self).__init__(message, *args)
|
| 918 |
-
|
| 919 |
-
def is_empty(text: str) -> bool:
|
| 920 |
-
return text == ""
|
| 921 |
-
|
| 922 |
-
|
| 923 |
-
def request_failed(status_code: int) -> bool:
|
| 924 |
-
"""Check if a request has failed or not.
|
| 925 |
-
A request is considered successful if the status code is in the 2** range."""
|
| 926 |
-
if status_code > 299 or status_code < 200:
|
| 927 |
-
return True
|
| 928 |
-
return False
|
| 929 |
-
|
| 930 |
-
|
| 931 |
-
def is_input_valid(
|
| 932 |
-
text: str, min_chars: int = 0, max_chars: Optional[int] = None
|
| 933 |
-
) -> bool:
|
| 934 |
-
"""
|
| 935 |
-
validate the target text to translate
|
| 936 |
-
@param min_chars: min characters
|
| 937 |
-
@param max_chars: max characters
|
| 938 |
-
@param text: text to translate
|
| 939 |
-
@return: bool
|
| 940 |
-
"""
|
| 941 |
-
if not isinstance(text, str):
|
| 942 |
-
raise NotValidPayload(text)
|
| 943 |
-
if max_chars and (not min_chars <= len(text) < max_chars):
|
| 944 |
-
raise NotValidLength(text, min_chars, max_chars)
|
| 945 |
-
return True
|
| 946 |
-
|
| 947 |
-
class BaseTranslator(ABC):
|
| 948 |
-
"""
|
| 949 |
-
Abstract class that serve as a base translator for other different translators
|
| 950 |
-
"""
|
| 951 |
-
|
| 952 |
-
def __init__(
|
| 953 |
-
self,
|
| 954 |
-
base_url: str = None,
|
| 955 |
-
languages: dict = language_codes,
|
| 956 |
-
source: str = "auto",
|
| 957 |
-
target: str = "en",
|
| 958 |
-
payload_key: Optional[str] = None,
|
| 959 |
-
element_tag: Optional[str] = None,
|
| 960 |
-
element_query: Optional[dict] = None,
|
| 961 |
-
**url_params,
|
| 962 |
-
):
|
| 963 |
-
"""
|
| 964 |
-
@param source: source language to translate from
|
| 965 |
-
@param target: target language to translate to
|
| 966 |
-
"""
|
| 967 |
-
self._base_url = base_url
|
| 968 |
-
self._languages = languages
|
| 969 |
-
self._supported_languages = list(self._languages.keys())
|
| 970 |
-
if not source:
|
| 971 |
-
raise InvalidSourceOrTargetLanguage(source)
|
| 972 |
-
if not target:
|
| 973 |
-
raise InvalidSourceOrTargetLanguage(target)
|
| 974 |
-
|
| 975 |
-
self._source, self._target = self._map_language_to_code(source, target)
|
| 976 |
-
self._url_params = url_params
|
| 977 |
-
self._element_tag = element_tag
|
| 978 |
-
self._element_query = element_query
|
| 979 |
-
self.payload_key = payload_key
|
| 980 |
-
super().__init__()
|
| 981 |
-
|
| 982 |
-
@property
|
| 983 |
-
def source(self):
|
| 984 |
-
return self._source
|
| 985 |
-
|
| 986 |
-
@source.setter
|
| 987 |
-
def source(self, lang):
|
| 988 |
-
self._source = lang
|
| 989 |
-
|
| 990 |
-
@property
|
| 991 |
-
def target(self):
|
| 992 |
-
return self._target
|
| 993 |
-
|
| 994 |
-
@target.setter
|
| 995 |
-
def target(self, lang):
|
| 996 |
-
self._target = lang
|
| 997 |
-
|
| 998 |
-
def _type(self):
|
| 999 |
-
return self.__class__.__name__
|
| 1000 |
-
|
| 1001 |
-
def _map_language_to_code(self, *languages):
|
| 1002 |
-
"""
|
| 1003 |
-
map language to its corresponding code (abbreviation) if the language was passed
|
| 1004 |
-
by its full name by the user
|
| 1005 |
-
@param languages: list of languages
|
| 1006 |
-
@return: mapped value of the language or raise an exception if the language is
|
| 1007 |
-
not supported
|
| 1008 |
-
"""
|
| 1009 |
-
for language in languages:
|
| 1010 |
-
if language in self._languages.values() or language == "auto":
|
| 1011 |
-
yield language
|
| 1012 |
-
elif language in self._languages.keys():
|
| 1013 |
-
yield self._languages[language]
|
| 1014 |
-
else:
|
| 1015 |
-
raise LanguageNotSupportedException(
|
| 1016 |
-
language,
|
| 1017 |
-
message=f"No support for the provided language.\n"
|
| 1018 |
-
f"Please select on of the supported languages:\n"
|
| 1019 |
-
f"{self._languages}",
|
| 1020 |
-
)
|
| 1021 |
-
|
| 1022 |
-
def _same_source_target(self) -> bool:
|
| 1023 |
-
return self._source == self._target
|
| 1024 |
-
|
| 1025 |
-
def get_supported_languages(
|
| 1026 |
-
self, as_dict: bool = False, **kwargs
|
| 1027 |
-
) -> Union[list, dict]:
|
| 1028 |
-
"""
|
| 1029 |
-
return the supported languages by the Google translator
|
| 1030 |
-
@param as_dict: if True, the languages will be returned as a dictionary
|
| 1031 |
-
mapping languages to their abbreviations
|
| 1032 |
-
@return: list or dict
|
| 1033 |
-
"""
|
| 1034 |
-
return self._supported_languages if not as_dict else self._languages
|
| 1035 |
-
|
| 1036 |
-
def is_language_supported(self, language: str, **kwargs) -> bool:
|
| 1037 |
-
"""
|
| 1038 |
-
check if the language is supported by the translator
|
| 1039 |
-
@param language: a string for 1 language
|
| 1040 |
-
@return: bool
|
| 1041 |
-
"""
|
| 1042 |
-
if (
|
| 1043 |
-
language == "auto"
|
| 1044 |
-
or language in self._languages.keys()
|
| 1045 |
-
or language in self._languages.values()
|
| 1046 |
-
):
|
| 1047 |
-
return True
|
| 1048 |
-
else:
|
| 1049 |
-
return False
|
| 1050 |
-
|
| 1051 |
-
@abstractmethod
|
| 1052 |
-
def translate(self, text: str, **kwargs) -> str:
|
| 1053 |
-
"""
|
| 1054 |
-
translate a text using a translator under the hood and return
|
| 1055 |
-
the translated text
|
| 1056 |
-
@param text: text to translate
|
| 1057 |
-
@param kwargs: additional arguments
|
| 1058 |
-
@return: str
|
| 1059 |
-
"""
|
| 1060 |
-
return NotImplemented("You need to implement the translate method!")
|
| 1061 |
-
|
| 1062 |
-
def _read_docx(self, f: str):
|
| 1063 |
-
import docx2txt
|
| 1064 |
-
return docx2txt.process(f)
|
| 1065 |
-
|
| 1066 |
-
def _read_pdf(self, f: str):
|
| 1067 |
-
import pypdf
|
| 1068 |
-
reader = pypdf.PdfReader(f)
|
| 1069 |
-
page = reader.pages[0]
|
| 1070 |
-
return page.extract_text()
|
| 1071 |
-
|
| 1072 |
-
def _translate_file(self, path: str, **kwargs) -> str:
|
| 1073 |
-
"""
|
| 1074 |
-
translate directly from file
|
| 1075 |
-
@param path: path to the target file
|
| 1076 |
-
@type path: str
|
| 1077 |
-
@param kwargs: additional args
|
| 1078 |
-
@return: str
|
| 1079 |
-
"""
|
| 1080 |
-
if not isinstance(path, Path):
|
| 1081 |
-
path = Path(path)
|
| 1082 |
-
|
| 1083 |
-
if not path.exists():
|
| 1084 |
-
print("Path to the file is wrong!")
|
| 1085 |
-
exit(1)
|
| 1086 |
-
|
| 1087 |
-
ext = path.suffix
|
| 1088 |
-
|
| 1089 |
-
if ext == ".docx":
|
| 1090 |
-
text = self._read_docx(f=str(path))
|
| 1091 |
-
elif ext == ".pdf":
|
| 1092 |
-
text = self._read_pdf(f=str(path))
|
| 1093 |
-
else:
|
| 1094 |
-
with open(path, "r", encoding="utf-8") as f:
|
| 1095 |
-
text = f.read().strip()
|
| 1096 |
-
|
| 1097 |
-
return self.translate(text)
|
| 1098 |
-
|
| 1099 |
-
def _translate_batch(self, batch: List[str], **kwargs) -> List[str]:
|
| 1100 |
-
"""
|
| 1101 |
-
translate a list of texts
|
| 1102 |
-
@param batch: list of texts you want to translate
|
| 1103 |
-
@return: list of translations
|
| 1104 |
-
"""
|
| 1105 |
-
if not batch:
|
| 1106 |
-
raise Exception("Enter your text list that you want to translate")
|
| 1107 |
-
arr = []
|
| 1108 |
-
for i, text in enumerate(batch):
|
| 1109 |
-
translated = self.translate(text, **kwargs)
|
| 1110 |
-
arr.append(translated)
|
| 1111 |
-
return arr
|
| 1112 |
-
|
| 1113 |
-
class GoogleTranslator(BaseTranslator):
|
| 1114 |
-
"""
|
| 1115 |
-
class that wraps functions, which use Google Translate under the hood to translate text(s)
|
| 1116 |
"""
|
| 1117 |
-
|
| 1118 |
-
|
| 1119 |
-
|
| 1120 |
-
|
| 1121 |
-
|
| 1122 |
-
|
| 1123 |
-
|
| 1124 |
-
|
| 1125 |
-
|
| 1126 |
-
|
| 1127 |
-
|
| 1128 |
-
|
| 1129 |
-
|
| 1130 |
-
|
| 1131 |
-
|
| 1132 |
-
|
| 1133 |
-
|
| 1134 |
-
|
| 1135 |
-
|
| 1136 |
-
|
| 1137 |
-
|
| 1138 |
-
|
| 1139 |
-
|
| 1140 |
-
|
| 1141 |
-
|
| 1142 |
-
|
| 1143 |
-
|
| 1144 |
-
|
| 1145 |
-
|
| 1146 |
-
if self.payload_key:
|
| 1147 |
-
self._url_params[self.payload_key] = text
|
| 1148 |
-
|
| 1149 |
-
response = requests.get(
|
| 1150 |
-
self._base_url, params=self._url_params, proxies=self.proxies
|
| 1151 |
)
|
| 1152 |
-
|
| 1153 |
-
|
| 1154 |
-
|
| 1155 |
-
|
| 1156 |
-
|
| 1157 |
-
|
| 1158 |
-
|
| 1159 |
-
|
| 1160 |
-
element = soup.find(self._element_tag, self._element_query)
|
| 1161 |
-
response.close()
|
| 1162 |
-
|
| 1163 |
-
if not element:
|
| 1164 |
-
element = soup.find(self._element_tag, self._alt_element_query)
|
| 1165 |
-
if not element:
|
| 1166 |
-
raise TranslationNotFound(text)
|
| 1167 |
-
|
| 1168 |
-
if element.get_text(strip=True) == text.strip():
|
| 1169 |
-
to_translate_alpha = "".join(ch for ch in text.strip() if ch.isalnum())
|
| 1170 |
-
translated_alpha = "".join(ch for ch in element.get_text(strip=True) if ch.isalnum())
|
| 1171 |
-
if (
|
| 1172 |
-
to_translate_alpha
|
| 1173 |
-
and translated_alpha
|
| 1174 |
-
and to_translate_alpha == translated_alpha
|
| 1175 |
-
):
|
| 1176 |
-
self._url_params["tl"] = self._target
|
| 1177 |
-
if "hl" not in self._url_params:
|
| 1178 |
-
return text.strip()
|
| 1179 |
-
del self._url_params["hl"]
|
| 1180 |
-
return self.translate(text)
|
| 1181 |
-
else:
|
| 1182 |
-
return element.get_text(strip=True)
|
| 1183 |
-
|
| 1184 |
-
def translate_file(self, path: str, **kwargs) -> str:
|
| 1185 |
-
return self._translate_file(path, **kwargs)
|
| 1186 |
-
|
| 1187 |
-
def translate_batch(self, batch: List[str], **kwargs) -> List[str]:
|
| 1188 |
-
return self._translate_batch(batch, **kwargs)
|
| 1189 |
-
|
| 1190 |
-
|
| 1191 |
-
def translate(txt,to_lang="en",from_lang="auto"):
|
| 1192 |
-
log(f'CALL translate')
|
| 1193 |
-
if len(txt) == 0:
|
| 1194 |
-
print("Translated text is empty. Skipping translation...")
|
| 1195 |
-
return txt.strip().lower()
|
| 1196 |
-
if from_lang == to_lang or get_language(txt) == to_lang:
|
| 1197 |
-
print("Same languages. Skipping translation...")
|
| 1198 |
-
return txt.strip().lower()
|
| 1199 |
-
translator = GoogleTranslator(from_lang=from_lang,to_lang=to_lang)
|
| 1200 |
-
translation = ""
|
| 1201 |
-
if len(txt) > 1000:
|
| 1202 |
-
words = txt.split()
|
| 1203 |
-
while len(words) > 0:
|
| 1204 |
-
chunk = ""
|
| 1205 |
-
while len(words) > 0 and len(chunk) < 1000:
|
| 1206 |
-
chunk = chunk + " " + words[0]
|
| 1207 |
-
words = words[1:]
|
| 1208 |
-
if len(chunk) > 1000:
|
| 1209 |
-
_words = chunk.split()
|
| 1210 |
-
words = [_words[-1], *words]
|
| 1211 |
-
chunk = " ".join(_words[:-1])
|
| 1212 |
-
translation = translation + " " + translator.translate(chunk)
|
| 1213 |
-
else:
|
| 1214 |
-
translation = translator.translate(txt)
|
| 1215 |
-
translation = translation.strip()
|
| 1216 |
-
log(f'RET translate with translation as {translation}')
|
| 1217 |
-
return translation.lower()
|
| 1218 |
-
|
| 1219 |
-
def handle_generation(h,w,d):
|
| 1220 |
-
log(f'CALL handle_generate')
|
| 1221 |
-
difficulty_points = 0
|
| 1222 |
-
|
| 1223 |
-
toks_len = get_tensor_length(tokenizer.encode(d, return_tensors="pt", truncation=False))
|
| 1224 |
-
if toks_len > 500:
|
| 1225 |
-
difficulty_points += 2
|
| 1226 |
-
elif toks_len > 50:
|
| 1227 |
-
difficulty_points += 1
|
| 1228 |
-
|
| 1229 |
-
pxs = h*w
|
| 1230 |
-
if pxs > 2 * (10 ** 6):
|
| 1231 |
-
difficulty_points += 2
|
| 1232 |
-
elif pxs > 1 * (10 ** 6):
|
| 1233 |
-
difficulty_points += 1
|
| 1234 |
-
|
| 1235 |
-
if difficulty_points < 2:
|
| 1236 |
-
return easy_generation(h,w,d)
|
| 1237 |
-
elif difficulty_points < 4:
|
| 1238 |
-
return balanced_generation(h,w,d)
|
| 1239 |
-
else:
|
| 1240 |
-
return hard_generation(h,w,d)
|
| 1241 |
-
|
| 1242 |
-
@spaces.GPU(duration=150)
|
| 1243 |
-
def easy_generation(h,w,d):
|
| 1244 |
-
return generation(h,w,d)
|
| 1245 |
-
|
| 1246 |
-
@spaces.GPU(duration=210)
|
| 1247 |
-
def balanced_generation(h,w,d):
|
| 1248 |
-
return generation(h,w,d)
|
| 1249 |
-
|
| 1250 |
-
@spaces.GPU(duration=270)
|
| 1251 |
-
def hard_generation(h,w,d):
|
| 1252 |
-
return generation(h,w,d)
|
| 1253 |
-
|
| 1254 |
-
def generation(h,w,d):
|
| 1255 |
-
if len(d) > 0:
|
| 1256 |
-
d = re.sub(r",( ){1,}",". ",d)
|
| 1257 |
-
d_lines = re.split(r"([\n]){1,}", d)
|
| 1258 |
|
| 1259 |
-
|
| 1260 |
-
|
| 1261 |
-
if d_lines[line_index] != "" and re.sub(r'[\.]$', '', d_lines[line_index]) == d_lines[line_index]:
|
| 1262 |
-
d_lines[line_index] += "."
|
| 1263 |
-
d = " ".join(d_lines)
|
| 1264 |
|
| 1265 |
-
|
| 1266 |
-
|
| 1267 |
-
|
| 1268 |
-
|
| 1269 |
-
|
| 1270 |
-
|
| 1271 |
-
|
| 1272 |
-
|
| 1273 |
-
|
| 1274 |
-
|
| 1275 |
-
|
| 1276 |
-
Negative: {neg}
|
| 1277 |
-
""")
|
| 1278 |
-
|
| 1279 |
-
img = image_pipe(
|
| 1280 |
-
prompt=pos,
|
| 1281 |
-
negative_prompt=neg,
|
| 1282 |
-
height=h,
|
| 1283 |
-
width=w,
|
| 1284 |
-
output_type="pil",
|
| 1285 |
-
guidance_scale=img_accu,
|
| 1286 |
-
num_images_per_prompt=1,
|
| 1287 |
-
num_inference_steps=image_steps,
|
| 1288 |
-
max_sequence_length=seq,
|
| 1289 |
-
generator=torch.Generator(device).manual_seed(random.randint(0, MAX_SEED))
|
| 1290 |
-
).images[0]
|
| 1291 |
-
return img
|
| 1292 |
-
|
| 1293 |
-
# entry
|
| 1294 |
-
|
| 1295 |
-
if __name__ == "__main__":
|
| 1296 |
-
# Changed the theme to a more colorful one and updated the title to English
|
| 1297 |
-
with gr.Blocks(theme=gr.themes.Soft(primary_hue="lime"), css=css) as demo:
|
| 1298 |
-
gr.Markdown(f"""
|
| 1299 |
-
# Multilingual Images
|
| 1300 |
-
""")
|
| 1301 |
-
gr.Markdown(f"""
|
| 1302 |
-
### Realistic. Upscalable. Multilingual.
|
| 1303 |
-
""")
|
| 1304 |
-
|
| 1305 |
-
gr.HTML("""<a href="https://visitorbadge.io/status?path=https%3A%2F%2Faiqcamp-Multilingual-Images.hf.space">
|
| 1306 |
-
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Faiqcamp-Multilingual-Images.hf.space&countColor=%23263759" />
|
| 1307 |
-
</a>""")
|
| 1308 |
-
|
| 1309 |
-
|
| 1310 |
-
with gr.Row():
|
| 1311 |
-
with gr.Column(scale=2):
|
| 1312 |
-
height = gr.Slider(
|
| 1313 |
-
label="Height (px)",
|
| 1314 |
-
minimum=512,
|
| 1315 |
-
maximum=1536,
|
| 1316 |
-
step=16,
|
| 1317 |
-
value=1024,
|
| 1318 |
-
)
|
| 1319 |
-
width = gr.Slider(
|
| 1320 |
-
label="Width (px)",
|
| 1321 |
-
minimum=512,
|
| 1322 |
-
maximum=1536,
|
| 1323 |
-
step=16,
|
| 1324 |
-
value=1024,
|
| 1325 |
-
)
|
| 1326 |
-
|
| 1327 |
-
run = gr.Button("Generate", elem_classes="btn")
|
| 1328 |
-
|
| 1329 |
-
top = gr.Textbox(
|
| 1330 |
-
placeholder="Top Title",
|
| 1331 |
-
value="",
|
| 1332 |
-
container=False,
|
| 1333 |
-
max_lines=1
|
| 1334 |
-
)
|
| 1335 |
-
bottom = gr.Textbox(
|
| 1336 |
-
placeholder="Bottom Title",
|
| 1337 |
-
value="",
|
| 1338 |
-
container=False,
|
| 1339 |
-
max_lines=1
|
| 1340 |
-
)
|
| 1341 |
-
|
| 1342 |
-
data = gr.Textbox(
|
| 1343 |
-
placeholder="Enter your text/prompt (multiple languages allowed)",
|
| 1344 |
-
value="",
|
| 1345 |
-
container=False,
|
| 1346 |
-
max_lines=100
|
| 1347 |
-
)
|
| 1348 |
-
|
| 1349 |
-
with gr.Column():
|
| 1350 |
-
cover = gr.Image(
|
| 1351 |
-
interactive=False,
|
| 1352 |
-
container=False,
|
| 1353 |
-
elem_classes="image-container",
|
| 1354 |
-
label="Result",
|
| 1355 |
-
show_label=True,
|
| 1356 |
-
type='pil',
|
| 1357 |
-
show_share_button=False
|
| 1358 |
-
)
|
| 1359 |
-
upscale_now = gr.Button("Upscale x2", elem_classes="btn")
|
| 1360 |
-
add_titles = gr.Button("Add title(s)", elem_classes="btn")
|
| 1361 |
-
|
| 1362 |
-
gr.Markdown("---")
|
| 1363 |
-
|
| 1364 |
-
# Bottom row explanation or details in English
|
| 1365 |
-
gr.Markdown("""
|
| 1366 |
-
## Features
|
| 1367 |
-
1. **Text Input**: You can input text in various languages; it will be automatically translated and summarized before generating an image.
|
| 1368 |
-
2. **Image Size Adjustment**: Use sliders to specify the width and height of the output image.
|
| 1369 |
-
3. **Overlay Text**: Easily add top/bottom titles to the generated image with a simple button click.
|
| 1370 |
-
4. **High-Quality Upscaling**: Increase the resolution with the "Upscale x2" feature.
|
| 1371 |
-
5. **Automatic GPU Resource Management**: The system automatically adjusts GPU usage time depending on input text length and image size.
|
| 1372 |
-
---
|
| 1373 |
-
""")
|
| 1374 |
-
|
| 1375 |
gr.Markdown("""
|
| 1376 |
-
###
|
| 1377 |
-
|
| 1378 |
-
|
| 1379 |
-
|
| 1380 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1381 |
""")
|
| 1382 |
|
| 1383 |
-
|
| 1384 |
-
|
| 1385 |
-
|
| 1386 |
-
|
| 1387 |
-
|
| 1388 |
-
|
| 1389 |
-
)
|
| 1390 |
-
upscale_now.click(
|
| 1391 |
-
fn=handle_upscaler,
|
| 1392 |
-
inputs=[cover],
|
| 1393 |
-
outputs=[cover]
|
| 1394 |
-
)
|
| 1395 |
-
add_titles.click(
|
| 1396 |
-
fn=add_text_above_image,
|
| 1397 |
-
inputs=[cover, top, bottom],
|
| 1398 |
-
outputs=[cover]
|
| 1399 |
-
)
|
| 1400 |
-
|
| 1401 |
-
demo.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
import os
|
| 5 |
+
import io
|
| 6 |
+
import base64
|
| 7 |
+
from kokoro import KModel, KPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
# Check if CUDA is available
|
| 10 |
+
CUDA_AVAILABLE = torch.cuda.is_available()
|
| 11 |
|
| 12 |
+
# Initialize the model
|
| 13 |
+
model = KModel().to('cuda' if CUDA_AVAILABLE else 'cpu').eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
# Initialize pipelines for different language codes (using 'a' for English)
|
| 16 |
+
pipelines = {'a': KPipeline(lang_code='a', model=False)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
# Custom pronunciation for "kokoro"
|
| 19 |
+
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
|
| 20 |
|
| 21 |
+
def text_to_audio(text, speed=1.0):
|
| 22 |
+
"""Convert text to audio using Kokoro model.
|
| 23 |
+
|
| 24 |
+
Args:
|
| 25 |
+
text: The text to convert to speech
|
| 26 |
+
speed: Speech speed multiplier (0.5-2.0, where 1.0 is normal speed)
|
| 27 |
+
|
| 28 |
+
Returns:
|
| 29 |
+
Audio data as a tuple of (sample_rate, audio_array)
|
| 30 |
"""
|
| 31 |
+
if not text:
|
| 32 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
pipeline = pipelines['a'] # Use English pipeline
|
| 35 |
+
voice = "af_heart" # Default voice (US English, female, Heart)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
# Process the text
|
| 38 |
+
pack = pipeline.load_voice(voice)
|
| 39 |
+
|
| 40 |
+
for _, ps, _ in pipeline(text, voice, speed):
|
| 41 |
+
ref_s = pack[len(ps)-1]
|
|
|
|
| 42 |
|
| 43 |
+
# Generate audio
|
| 44 |
+
try:
|
| 45 |
+
audio = model(ps, ref_s, speed)
|
| 46 |
+
except Exception as e:
|
| 47 |
+
raise gr.Error(f"Error generating audio: {str(e)}")
|
| 48 |
+
|
| 49 |
+
# Return the audio with 24kHz sample rate
|
| 50 |
+
return 24000, audio.numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
+
def text_to_audio_b64(text, speed=1.0):
|
| 55 |
+
"""Convert text to audio and return as base64 encoded WAV file.
|
| 56 |
+
|
| 57 |
+
Args:
|
| 58 |
+
text: The text to convert to speech
|
| 59 |
+
speed: Speech speed multiplier (0.5-2.0, where 1.0 is normal speed)
|
| 60 |
+
|
| 61 |
+
Returns:
|
| 62 |
+
Base64 encoded WAV file as a string
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
"""
|
| 64 |
+
import soundfile as sf
|
| 65 |
+
|
| 66 |
+
result = text_to_audio(text, speed)
|
| 67 |
+
if result is None:
|
| 68 |
+
return None
|
| 69 |
+
|
| 70 |
+
sample_rate, audio_data = result
|
| 71 |
+
|
| 72 |
+
# Save to BytesIO object
|
| 73 |
+
wav_io = io.BytesIO()
|
| 74 |
+
sf.write(wav_io, audio_data, sample_rate, format='WAV')
|
| 75 |
+
wav_io.seek(0)
|
| 76 |
+
|
| 77 |
+
# Convert to base64
|
| 78 |
+
wav_b64 = base64.b64encode(wav_io.read()).decode('utf-8')
|
| 79 |
+
return wav_b64
|
| 80 |
+
|
| 81 |
+
# Create Gradio interface
|
| 82 |
+
with gr.Blocks(title="Kokoro Text-to-Audio MCP") as app:
|
| 83 |
+
gr.Markdown("# 🎵 Kokoro Text-to-Audio MCP")
|
| 84 |
+
gr.Markdown("Convert text to speech using the Kokoro-82M model")
|
| 85 |
+
|
| 86 |
+
with gr.Row():
|
| 87 |
+
with gr.Column():
|
| 88 |
+
text_input = gr.Textbox(
|
| 89 |
+
label="Enter your text",
|
| 90 |
+
placeholder="Type something to convert to audio...",
|
| 91 |
+
lines=5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
)
|
| 93 |
+
speed_slider = gr.Slider(
|
| 94 |
+
minimum=0.5,
|
| 95 |
+
maximum=2.0,
|
| 96 |
+
value=1.0,
|
| 97 |
+
step=0.1,
|
| 98 |
+
label="Speech Speed"
|
| 99 |
+
)
|
| 100 |
+
submit_btn = gr.Button("Generate Audio")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
+
with gr.Column():
|
| 103 |
+
audio_output = gr.Audio(label="Generated Audio", type="numpy")
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
+
submit_btn.click(
|
| 106 |
+
fn=text_to_audio,
|
| 107 |
+
inputs=[text_input, speed_slider],
|
| 108 |
+
outputs=[audio_output]
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
gr.Markdown("### Usage Tips")
|
| 112 |
+
gr.Markdown("- Adjust the speed slider to modify the pace of speech")
|
| 113 |
+
|
| 114 |
+
# Add section about MCP support
|
| 115 |
+
with gr.Accordion("MCP Support (for LLMs)", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
gr.Markdown("""
|
| 117 |
+
### MCP Support
|
| 118 |
+
|
| 119 |
+
This app supports the Model Context Protocol (MCP), allowing Large Language Models like Claude Desktop to use it as a tool.
|
| 120 |
+
|
| 121 |
+
To use this app with an MCP client, add the following configuration:
|
| 122 |
+
|
| 123 |
+
```json
|
| 124 |
+
{
|
| 125 |
+
"mcpServers": {
|
| 126 |
+
"kokoroTTS": {
|
| 127 |
+
"url": "https://fdaudens-kokoro-mcp.hf.space/gradio_api/mcp/sse"
|
| 128 |
+
}
|
| 129 |
+
}
|
| 130 |
+
}
|
| 131 |
+
```
|
| 132 |
+
|
| 133 |
+
Replace `your-app-url.hf.space` with your actual Hugging Face Space URL.
|
| 134 |
""")
|
| 135 |
|
| 136 |
+
# Launch the app with MCP support
|
| 137 |
+
if __name__ == "__main__":
|
| 138 |
+
# Check for environment variable to enable MCP
|
| 139 |
+
enable_mcp = os.environ.get('GRADIO_MCP_SERVER', 'False').lower() in ('true', '1', 't')
|
| 140 |
+
|
| 141 |
+
app.launch(mcp_server=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|