Spaces:
Paused
Paused
Yaron Koresh
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -27,9 +27,9 @@ from safetensors.torch import load_file, save_file
|
|
| 27 |
from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, DDIMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL, UNet3DConditionModel
|
| 28 |
#import jax
|
| 29 |
#import jax.numpy as jnp
|
| 30 |
-
from numba import cuda
|
| 31 |
from numba.cuda import autojit as gpu, grid
|
| 32 |
-
|
| 33 |
# logging
|
| 34 |
|
| 35 |
warnings.filterwarnings("ignore")
|
|
@@ -101,6 +101,7 @@ footer {
|
|
| 101 |
display: flex;
|
| 102 |
}
|
| 103 |
"""
|
|
|
|
| 104 |
js="""
|
| 105 |
function custom(){
|
| 106 |
document.querySelector("div#prompt input").setAttribute("maxlength","38")
|
|
@@ -110,11 +111,9 @@ function custom(){
|
|
| 110 |
|
| 111 |
# functionality
|
| 112 |
|
|
|
|
| 113 |
def run(cmd):
|
| 114 |
-
|
| 115 |
-
#y = cuda.threadIdx.y + cuda.blockIdx.y * cuda.blockDim.y
|
| 116 |
-
#z = cuda.threadIdx.z + cuda.blockIdx.z * cuda.blockDim.z
|
| 117 |
-
|
| 118 |
result = subprocess.run(cmd, shell=True, capture_output=True, env=None)
|
| 119 |
if result.returncode != 0:
|
| 120 |
logging.error(
|
|
@@ -126,11 +125,6 @@ def run(cmd):
|
|
| 126 |
@gpu()
|
| 127 |
def translate(text,lang):
|
| 128 |
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
text=text[]
|
| 132 |
-
lang=lang[pos]
|
| 133 |
-
|
| 134 |
if text == None or lang == None:
|
| 135 |
return ""
|
| 136 |
text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip()
|
|
@@ -171,35 +165,14 @@ def translate(text,lang):
|
|
| 171 |
print(ret)
|
| 172 |
return ret
|
| 173 |
|
| 174 |
-
@
|
| 175 |
def generate_random_string(length):
|
| 176 |
-
|
| 177 |
-
tx = cuda.threadIdx.x
|
| 178 |
-
bx = cuda.blockIdx.x
|
| 179 |
-
dx = cuda.blockDim.x
|
| 180 |
-
pos = tx + bx * dx
|
| 181 |
-
except:
|
| 182 |
-
pos = 0
|
| 183 |
-
|
| 184 |
-
length=length[pos]
|
| 185 |
-
|
| 186 |
characters = string.ascii_letters + string.digits
|
| 187 |
return ''.join(random.choice(characters) for _ in range(length))
|
| 188 |
|
| 189 |
-
@gpu(
|
| 190 |
def Piper(image,positive,negative,motion):
|
| 191 |
-
try:
|
| 192 |
-
tx = cuda.threadIdx.x
|
| 193 |
-
bx = cuda.blockIdx.x
|
| 194 |
-
dx = cuda.blockDim.x
|
| 195 |
-
pos = tx + bx * dx
|
| 196 |
-
except:
|
| 197 |
-
pos = 0
|
| 198 |
-
|
| 199 |
-
image=image[pos]
|
| 200 |
-
positive=positive[pos]
|
| 201 |
-
negative=negative[pos]
|
| 202 |
-
motion=motion[pos]
|
| 203 |
|
| 204 |
global last_motion
|
| 205 |
global ip_loaded
|
|
@@ -236,22 +209,16 @@ def Piper(image,positive,negative,motion):
|
|
| 236 |
num_frames=(fps*time)
|
| 237 |
)
|
| 238 |
|
| 239 |
-
@gpu(
|
| 240 |
def infer(pm):
|
| 241 |
-
|
| 242 |
-
tx = cuda.threadIdx.x
|
| 243 |
-
bx = cuda.blockIdx.x
|
| 244 |
-
dx = cuda.blockDim.x
|
| 245 |
-
pos = tx + bx * dx
|
| 246 |
-
except:
|
| 247 |
-
pos = 0
|
| 248 |
|
| 249 |
-
pm = pm[
|
| 250 |
|
| 251 |
print("infer: started")
|
| 252 |
|
| 253 |
p1 = pm["p"]
|
| 254 |
-
name = generate_random_string(
|
| 255 |
|
| 256 |
neg = pm["n"]
|
| 257 |
if neg != "":
|
|
@@ -264,46 +231,25 @@ def infer(pm):
|
|
| 264 |
|
| 265 |
if pm["i"] == None:
|
| 266 |
return None
|
| 267 |
-
out = Piper[
|
| 268 |
export_to_gif(out.frames[0],name,fps=fps)
|
| 269 |
return name
|
| 270 |
|
| 271 |
-
@cpu(cache=True)
|
| 272 |
def handle(i,m,p1,p2,result):
|
| 273 |
-
try:
|
| 274 |
-
tx = cuda.threadIdx.x
|
| 275 |
-
bx = cuda.blockIdx.x
|
| 276 |
-
dx = cuda.blockDim.x
|
| 277 |
-
pos = tx + bx * dx
|
| 278 |
-
except:
|
| 279 |
-
pos = 0
|
| 280 |
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
p1=p1[pos]
|
| 284 |
-
p2=p2[pos]
|
| 285 |
-
result=result[pos]
|
| 286 |
-
|
| 287 |
-
p1_en = translate([p1],["english"])
|
| 288 |
-
p2_en = translate([p2],["english"])
|
| 289 |
pm = {"p":p1_en,"n":p2_en,"m":m,"i":i}
|
| 290 |
ln = len(result)
|
| 291 |
rng = list(range(ln))
|
| 292 |
arr = [pm for _ in rng]
|
| 293 |
#with Pool(f'{ ln }:ppn=2', queue='productionQ', timelimit='5:00:00', workdir='.') as pool:
|
| 294 |
#return pool.map(infer,arr)
|
| 295 |
-
ret = infer[
|
| 296 |
return ret
|
| 297 |
|
| 298 |
-
@
|
| 299 |
def ui():
|
| 300 |
-
try:
|
| 301 |
-
tx = cuda.threadIdx.x
|
| 302 |
-
bx = cuda.blockIdx.x
|
| 303 |
-
dx = cuda.blockDim.x
|
| 304 |
-
pos = tx + bx * dx
|
| 305 |
-
except:
|
| 306 |
-
pos = 0
|
| 307 |
|
| 308 |
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
|
| 309 |
with gr.Column(elem_id="col-container"):
|
|
@@ -353,19 +299,12 @@ def ui():
|
|
| 353 |
|
| 354 |
gr.on(
|
| 355 |
triggers=[run_button.click, prompt.submit, prompt2.submit],
|
| 356 |
-
fn=handle,inputs=[
|
| 357 |
)
|
| 358 |
demo.queue().launch()
|
| 359 |
|
| 360 |
-
@
|
| 361 |
def pre():
|
| 362 |
-
try:
|
| 363 |
-
tx = cuda.threadIdx.x
|
| 364 |
-
bx = cuda.blockIdx.x
|
| 365 |
-
dx = cuda.blockDim.x
|
| 366 |
-
pos = tx + bx * dx
|
| 367 |
-
except:
|
| 368 |
-
pos = 0
|
| 369 |
|
| 370 |
pipe = AnimateDiffPipeline.from_pretrained(base, vae=vae, motion_adapter=adapter, torch_dtype=dtype).to(device)
|
| 371 |
pipe.scheduler = DDIMScheduler(
|
|
@@ -381,20 +320,12 @@ def pre():
|
|
| 381 |
pipe.enable_vae_slicing()
|
| 382 |
pipe.enable_free_init(method="butterworth", use_fast_sampling=fast)
|
| 383 |
|
| 384 |
-
@cpu(cache=True)
|
| 385 |
def entry():
|
| 386 |
-
try:
|
| 387 |
-
tx = cuda.threadIdx.x
|
| 388 |
-
bx = cuda.blockIdx.x
|
| 389 |
-
dx = cuda.blockDim.x
|
| 390 |
-
pos = tx + bx * dx
|
| 391 |
-
except:
|
| 392 |
-
pos = 0
|
| 393 |
-
|
| 394 |
os.chdir(os.path.abspath(os.path.dirname(__file__)))
|
| 395 |
mp.set_start_method("spawn", force=True)
|
| 396 |
-
pre()
|
| 397 |
-
ui()
|
| 398 |
|
| 399 |
# entry
|
| 400 |
|
|
|
|
| 27 |
from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, DDIMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL, UNet3DConditionModel
|
| 28 |
#import jax
|
| 29 |
#import jax.numpy as jnp
|
| 30 |
+
from numba import cuda, njit as cpu, void, int64 as int, float64 as float, boolean as bool
|
| 31 |
from numba.cuda import autojit as gpu, grid
|
| 32 |
+
from numba.types import unicode_type as string
|
| 33 |
# logging
|
| 34 |
|
| 35 |
warnings.filterwarnings("ignore")
|
|
|
|
| 101 |
display: flex;
|
| 102 |
}
|
| 103 |
"""
|
| 104 |
+
|
| 105 |
js="""
|
| 106 |
function custom(){
|
| 107 |
document.querySelector("div#prompt input").setAttribute("maxlength","38")
|
|
|
|
| 111 |
|
| 112 |
# functionality
|
| 113 |
|
| 114 |
+
@cpu(string(string),cache=True,parallel=True)
|
| 115 |
def run(cmd):
|
| 116 |
+
|
|
|
|
|
|
|
|
|
|
| 117 |
result = subprocess.run(cmd, shell=True, capture_output=True, env=None)
|
| 118 |
if result.returncode != 0:
|
| 119 |
logging.error(
|
|
|
|
| 125 |
@gpu()
|
| 126 |
def translate(text,lang):
|
| 127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
if text == None or lang == None:
|
| 129 |
return ""
|
| 130 |
text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip()
|
|
|
|
| 165 |
print(ret)
|
| 166 |
return ret
|
| 167 |
|
| 168 |
+
@gpu()
|
| 169 |
def generate_random_string(length):
|
| 170 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
characters = string.ascii_letters + string.digits
|
| 172 |
return ''.join(random.choice(characters) for _ in range(length))
|
| 173 |
|
| 174 |
+
@gpu()
|
| 175 |
def Piper(image,positive,negative,motion):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
global last_motion
|
| 178 |
global ip_loaded
|
|
|
|
| 209 |
num_frames=(fps*time)
|
| 210 |
)
|
| 211 |
|
| 212 |
+
@gpu()
|
| 213 |
def infer(pm):
|
| 214 |
+
x = grid(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
|
| 216 |
+
pm = pm[x]
|
| 217 |
|
| 218 |
print("infer: started")
|
| 219 |
|
| 220 |
p1 = pm["p"]
|
| 221 |
+
name = generate_random_string[1,32](12)+".png"
|
| 222 |
|
| 223 |
neg = pm["n"]
|
| 224 |
if neg != "":
|
|
|
|
| 231 |
|
| 232 |
if pm["i"] == None:
|
| 233 |
return None
|
| 234 |
+
out = Piper[1,32](pm["i"],posi,neg,pm["m"])
|
| 235 |
export_to_gif(out.frames[0],name,fps=fps)
|
| 236 |
return name
|
| 237 |
|
|
|
|
| 238 |
def handle(i,m,p1,p2,result):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
+
p1_en = translate[1,32](p1,"english")
|
| 241 |
+
p2_en = translate[1,32](p2,"english")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
pm = {"p":p1_en,"n":p2_en,"m":m,"i":i}
|
| 243 |
ln = len(result)
|
| 244 |
rng = list(range(ln))
|
| 245 |
arr = [pm for _ in rng]
|
| 246 |
#with Pool(f'{ ln }:ppn=2', queue='productionQ', timelimit='5:00:00', workdir='.') as pool:
|
| 247 |
#return pool.map(infer,arr)
|
| 248 |
+
ret = infer[ln,32](arr)
|
| 249 |
return ret
|
| 250 |
|
| 251 |
+
@gpu()
|
| 252 |
def ui():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
|
| 254 |
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
|
| 255 |
with gr.Column(elem_id="col-container"):
|
|
|
|
| 299 |
|
| 300 |
gr.on(
|
| 301 |
triggers=[run_button.click, prompt.submit, prompt2.submit],
|
| 302 |
+
fn=handle,inputs=[img,motion,prompt,prompt2,result],outputs=result
|
| 303 |
)
|
| 304 |
demo.queue().launch()
|
| 305 |
|
| 306 |
+
@gpu()
|
| 307 |
def pre():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
|
| 309 |
pipe = AnimateDiffPipeline.from_pretrained(base, vae=vae, motion_adapter=adapter, torch_dtype=dtype).to(device)
|
| 310 |
pipe.scheduler = DDIMScheduler(
|
|
|
|
| 320 |
pipe.enable_vae_slicing()
|
| 321 |
pipe.enable_free_init(method="butterworth", use_fast_sampling=fast)
|
| 322 |
|
| 323 |
+
@cpu(void(),cache=True,parallel=True)
|
| 324 |
def entry():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
os.chdir(os.path.abspath(os.path.dirname(__file__)))
|
| 326 |
mp.set_start_method("spawn", force=True)
|
| 327 |
+
pre[1,32]()
|
| 328 |
+
ui[1,32]()
|
| 329 |
|
| 330 |
# entry
|
| 331 |
|