Spaces:
Paused
Paused
commit
Browse files
app.py
CHANGED
|
@@ -25,6 +25,7 @@ from huggingface_hub import hf_hub_download
|
|
| 25 |
from safetensors.torch import load_file, save_file
|
| 26 |
from diffusers import FluxPipeline
|
| 27 |
from PIL import Image, ImageDraw, ImageFont
|
|
|
|
| 28 |
|
| 29 |
# logging
|
| 30 |
|
|
@@ -45,6 +46,7 @@ else:
|
|
| 45 |
device = "cpu"
|
| 46 |
|
| 47 |
base = "black-forest-labs/FLUX.1-schnell"
|
|
|
|
| 48 |
|
| 49 |
# precision data
|
| 50 |
|
|
@@ -118,6 +120,9 @@ function custom(){
|
|
| 118 |
image_pipe = FluxPipeline.from_pretrained(base, torch_dtype=torch.bfloat16).to(device)
|
| 119 |
image_pipe.enable_model_cpu_offload()
|
| 120 |
|
|
|
|
|
|
|
|
|
|
| 121 |
# functionality
|
| 122 |
|
| 123 |
def generate_random_string(length):
|
|
@@ -145,8 +150,9 @@ def handle_generate(artist,song,genre,lyrics):
|
|
| 145 |
pos_song = ' '.join(word[0].upper() + word[1:] for word in pos_song.split())
|
| 146 |
pos_genre = re.sub(f'[{punctuation}]', '', re.sub("([ \t\n]){1,}", " ", genre)).upper().strip()
|
| 147 |
pos_lyrics = re.sub(f'[{punctuation}]', '', re.sub("([ \t\n]){1,}", " ", lyrics)).lower().strip()
|
|
|
|
| 148 |
neg = f"Textual Labeled Distorted Discontinuous Ugly Blurry"
|
| 149 |
-
pos = f'Realistic Natural Genuine Reasonable Detailed { pos_genre } GENRE SONG
|
| 150 |
|
| 151 |
print(f"""
|
| 152 |
Positive: {pos}
|
|
|
|
| 25 |
from safetensors.torch import load_file, save_file
|
| 26 |
from diffusers import FluxPipeline
|
| 27 |
from PIL import Image, ImageDraw, ImageFont
|
| 28 |
+
from transformers import PegasusForConditionalGeneration, PegasusTokenizerFast
|
| 29 |
|
| 30 |
# logging
|
| 31 |
|
|
|
|
| 46 |
device = "cpu"
|
| 47 |
|
| 48 |
base = "black-forest-labs/FLUX.1-schnell"
|
| 49 |
+
pegasus_name = "google/pegasus-xsum"
|
| 50 |
|
| 51 |
# precision data
|
| 52 |
|
|
|
|
| 120 |
image_pipe = FluxPipeline.from_pretrained(base, torch_dtype=torch.bfloat16).to(device)
|
| 121 |
image_pipe.enable_model_cpu_offload()
|
| 122 |
|
| 123 |
+
pegasus_tokenizer = PegasusTokenizerFast.from_pretrained(pegasus_name)
|
| 124 |
+
pegasus_model = PegasusForConditionalGeneration.from_pretrained(pegasus_name)
|
| 125 |
+
|
| 126 |
# functionality
|
| 127 |
|
| 128 |
def generate_random_string(length):
|
|
|
|
| 150 |
pos_song = ' '.join(word[0].upper() + word[1:] for word in pos_song.split())
|
| 151 |
pos_genre = re.sub(f'[{punctuation}]', '', re.sub("([ \t\n]){1,}", " ", genre)).upper().strip()
|
| 152 |
pos_lyrics = re.sub(f'[{punctuation}]', '', re.sub("([ \t\n]){1,}", " ", lyrics)).lower().strip()
|
| 153 |
+
pos_lyrics_sum = pegasus_tokenizer.decode(pegasus_model.generate(pegasus_tokenizer(pos_lyrics,return_tensors="pt").input_ids)[0], skip_special_tokens=True)
|
| 154 |
neg = f"Textual Labeled Distorted Discontinuous Ugly Blurry"
|
| 155 |
+
pos = f'Realistic Natural Genuine Reasonable Detailed, { pos_genre } GENRE SONG - { pos_song }: "{ pos_lyrics_sum }"'
|
| 156 |
|
| 157 |
print(f"""
|
| 158 |
Positive: {pos}
|