Spaces:
Paused
Paused
Yaron Koresh
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -27,16 +27,13 @@ from safetensors.torch import load_file, save_file
|
|
| 27 |
from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, DDIMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL, UNet3DConditionModel
|
| 28 |
#import jax
|
| 29 |
#import jax.numpy as jnp
|
| 30 |
-
from numba import
|
| 31 |
from numba.cuda import jit as gpu
|
| 32 |
|
| 33 |
# optimization:
|
| 34 |
|
| 35 |
# @gpu(cache=True)
|
| 36 |
-
# @
|
| 37 |
-
# @cpu2(cache=True,nopython=True,parallel=True)
|
| 38 |
-
# @cpu1(cache=True)
|
| 39 |
-
# @cpu2(cache=True)
|
| 40 |
|
| 41 |
# logging
|
| 42 |
|
|
@@ -118,18 +115,19 @@ function custom(){
|
|
| 118 |
|
| 119 |
# functionality
|
| 120 |
|
| 121 |
-
@gpu(cache=True)
|
| 122 |
-
|
| 123 |
-
# @
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
|
|
|
| 133 |
|
| 134 |
result = subprocess.run(cmd, shell=True, capture_output=True, env=None)
|
| 135 |
if result.returncode != 0:
|
|
@@ -139,18 +137,20 @@ def run(*args):
|
|
| 139 |
sys.exit()
|
| 140 |
return result
|
| 141 |
|
| 142 |
-
@gpu(cache=True)
|
| 143 |
-
|
| 144 |
-
# @
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
| 154 |
|
| 155 |
if text == None or lang == None:
|
| 156 |
return ""
|
|
@@ -181,7 +181,7 @@ def translate(*args):
|
|
| 181 |
translated = text
|
| 182 |
try:
|
| 183 |
src_lang = html.xpath('//*[@class="source-language"]')[0].text_content().lower().strip()
|
| 184 |
-
trgt_lang = html.xpath
|
| 185 |
src_text = html.xpath('//*[@id="tw-source-text"]/*')[0].text_content().lower().strip()
|
| 186 |
trgt_text = html.xpath('//*[@id="tw-target-text"]/*')[0].text_content().lower().strip()
|
| 187 |
if trgt_lang == lang:
|
|
@@ -192,34 +192,39 @@ def translate(*args):
|
|
| 192 |
print(ret)
|
| 193 |
return ret
|
| 194 |
|
| 195 |
-
@gpu(cache=True)
|
| 196 |
-
|
| 197 |
-
# @
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
|
|
|
| 207 |
|
| 208 |
characters = string.ascii_letters + string.digits
|
| 209 |
return ''.join(random.choice(characters) for _ in range(length))
|
| 210 |
|
| 211 |
@gpu(cache=True)
|
| 212 |
-
# @
|
| 213 |
-
# @
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
|
| 224 |
global last_motion
|
| 225 |
global ip_loaded
|
|
@@ -257,22 +262,23 @@ def Piper(*args):
|
|
| 257 |
)
|
| 258 |
|
| 259 |
@gpu(cache=True)
|
| 260 |
-
# @
|
| 261 |
-
# @
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
|
|
|
| 271 |
|
| 272 |
print("infer: started")
|
| 273 |
|
| 274 |
p1 = pm["p"]
|
| 275 |
-
name = generate_random_string[
|
| 276 |
|
| 277 |
neg = pm["n"]
|
| 278 |
if neg != "":
|
|
@@ -285,44 +291,50 @@ def infer(args):
|
|
| 285 |
|
| 286 |
if pm["i"] == None:
|
| 287 |
return None
|
| 288 |
-
out = Piper[32,32](pm["i"],posi,neg,pm["m"])
|
| 289 |
export_to_gif(out.frames[0],name,fps=fps)
|
| 290 |
return name
|
| 291 |
|
| 292 |
-
@gpu(cache=True)
|
| 293 |
-
|
| 294 |
-
# @
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 307 |
pm = {"p":p1_en,"n":p2_en,"m":m,"i":i}
|
| 308 |
ln = len(result)
|
| 309 |
rng = list(range(ln))
|
| 310 |
arr = [pm for _ in rng]
|
| 311 |
#with Pool(f'{ ln }:ppn=2', queue='productionQ', timelimit='5:00:00', workdir='.') as pool:
|
| 312 |
#return pool.map(infer,arr)
|
| 313 |
-
ret = infer[32+ln,32](
|
| 314 |
return ret
|
| 315 |
|
| 316 |
-
@gpu(cache=True)
|
| 317 |
-
# @
|
| 318 |
-
|
| 319 |
-
# @cpu1(cache=True)
|
| 320 |
-
# @cpu2(cache=True)
|
| 321 |
def ui():
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
|
|
|
|
|
|
|
|
|
| 326 |
|
| 327 |
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
|
| 328 |
with gr.Column(elem_id="col-container"):
|
|
@@ -372,20 +384,21 @@ def ui():
|
|
| 372 |
|
| 373 |
gr.on(
|
| 374 |
triggers=[run_button.click, prompt.submit, prompt2.submit],
|
| 375 |
-
fn=handle
|
| 376 |
)
|
| 377 |
demo.queue().launch()
|
| 378 |
|
| 379 |
-
@gpu(cache=True)
|
| 380 |
-
# @
|
| 381 |
-
|
| 382 |
-
# @cpu1(cache=True)
|
| 383 |
-
# @cpu2(cache=True)
|
| 384 |
def pre():
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
|
|
|
|
|
|
|
|
|
| 389 |
|
| 390 |
pipe = AnimateDiffPipeline.from_pretrained(base, vae=vae, motion_adapter=adapter, torch_dtype=dtype).to(device)
|
| 391 |
pipe.scheduler = DDIMScheduler(
|
|
@@ -402,15 +415,21 @@ def pre():
|
|
| 402 |
pipe.enable_free_init(method="butterworth", use_fast_sampling=fast)
|
| 403 |
|
| 404 |
# @gpu(cache=True)
|
| 405 |
-
# @
|
| 406 |
-
|
| 407 |
-
@cpu1(cache=True)
|
| 408 |
-
# @cpu2(cache=True)
|
| 409 |
def entry():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 410 |
os.chdir(os.path.abspath(os.path.dirname(__file__)))
|
| 411 |
mp.set_start_method("spawn", force=True)
|
| 412 |
-
pre
|
| 413 |
-
ui
|
| 414 |
|
| 415 |
# entry
|
| 416 |
|
|
|
|
| 27 |
from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, DDIMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL, UNet3DConditionModel
|
| 28 |
#import jax
|
| 29 |
#import jax.numpy as jnp
|
| 30 |
+
from numba import jit as cpu, cuda
|
| 31 |
from numba.cuda import jit as gpu
|
| 32 |
|
| 33 |
# optimization:
|
| 34 |
|
| 35 |
# @gpu(cache=True)
|
| 36 |
+
# @cpu(cache=True)
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
# logging
|
| 39 |
|
|
|
|
| 115 |
|
| 116 |
# functionality
|
| 117 |
|
| 118 |
+
# @gpu(cache=True)
|
| 119 |
+
@cpu(cache=True,nopython=True,parallel=True)
|
| 120 |
+
# @cpu(cache=True)
|
| 121 |
+
def run(cmd):
|
| 122 |
+
try:
|
| 123 |
+
tx = cuda.threadIdx.x
|
| 124 |
+
bx = cuda.blockIdx.x
|
| 125 |
+
dx = cuda.blockDim.x
|
| 126 |
+
pos = tx + bx * dx
|
| 127 |
+
except:
|
| 128 |
+
pos = 0
|
| 129 |
+
|
| 130 |
+
cmd=cmd[pos]
|
| 131 |
|
| 132 |
result = subprocess.run(cmd, shell=True, capture_output=True, env=None)
|
| 133 |
if result.returncode != 0:
|
|
|
|
| 137 |
sys.exit()
|
| 138 |
return result
|
| 139 |
|
| 140 |
+
# @gpu(cache=True)
|
| 141 |
+
@cpu(cache=True,nopython=True,parallel=True)
|
| 142 |
+
# @cpu(cache=True)
|
| 143 |
+
def translate(args):
|
| 144 |
+
try:
|
| 145 |
+
tx = cuda.threadIdx.x
|
| 146 |
+
bx = cuda.blockIdx.x
|
| 147 |
+
dx = cuda.blockDim.x
|
| 148 |
+
pos = tx + bx * dx
|
| 149 |
+
except:
|
| 150 |
+
pos = 0
|
| 151 |
+
|
| 152 |
+
text=text[pos]
|
| 153 |
+
lang=lang[pos]
|
| 154 |
|
| 155 |
if text == None or lang == None:
|
| 156 |
return ""
|
|
|
|
| 181 |
translated = text
|
| 182 |
try:
|
| 183 |
src_lang = html.xpath('//*[@class="source-language"]')[0].text_content().lower().strip()
|
| 184 |
+
trgt_lang = html.xpath'//*[@class="target-language"]')[0].text_content().lower().strip()
|
| 185 |
src_text = html.xpath('//*[@id="tw-source-text"]/*')[0].text_content().lower().strip()
|
| 186 |
trgt_text = html.xpath('//*[@id="tw-target-text"]/*')[0].text_content().lower().strip()
|
| 187 |
if trgt_lang == lang:
|
|
|
|
| 192 |
print(ret)
|
| 193 |
return ret
|
| 194 |
|
| 195 |
+
# @gpu(cache=True)
|
| 196 |
+
@cpu(cache=True,nopython=True,parallel=True)
|
| 197 |
+
# @cpu(cache=True)
|
| 198 |
+
def generate_random_string(length):
|
| 199 |
+
try:
|
| 200 |
+
tx = cuda.threadIdx.x
|
| 201 |
+
bx = cuda.blockIdx.x
|
| 202 |
+
dx = cuda.blockDim.x
|
| 203 |
+
pos = tx + bx * dx
|
| 204 |
+
except:
|
| 205 |
+
pos = 0
|
| 206 |
+
|
| 207 |
+
length=length[pos]
|
| 208 |
|
| 209 |
characters = string.ascii_letters + string.digits
|
| 210 |
return ''.join(random.choice(characters) for _ in range(length))
|
| 211 |
|
| 212 |
@gpu(cache=True)
|
| 213 |
+
# @cpu(cache=True,nopython=True,parallel=True)
|
| 214 |
+
# @cpu(cache=True)
|
| 215 |
+
def Piper(image,positive,negative,motion):
|
| 216 |
+
try:
|
| 217 |
+
tx = cuda.threadIdx.x
|
| 218 |
+
bx = cuda.blockIdx.x
|
| 219 |
+
dx = cuda.blockDim.x
|
| 220 |
+
pos = tx + bx * dx
|
| 221 |
+
except:
|
| 222 |
+
pos = 0
|
| 223 |
+
|
| 224 |
+
image=image[pos]
|
| 225 |
+
positive=positive[pos]
|
| 226 |
+
negative=negative[pos]
|
| 227 |
+
motion=motion[pos]
|
| 228 |
|
| 229 |
global last_motion
|
| 230 |
global ip_loaded
|
|
|
|
| 262 |
)
|
| 263 |
|
| 264 |
@gpu(cache=True)
|
| 265 |
+
# @cpu(cache=True,nopython=True,parallel=True)
|
| 266 |
+
# @cpu(cache=True)
|
| 267 |
+
def infer(pm):
|
| 268 |
+
try:
|
| 269 |
+
tx = cuda.threadIdx.x
|
| 270 |
+
bx = cuda.blockIdx.x
|
| 271 |
+
dx = cuda.blockDim.x
|
| 272 |
+
pos = tx + bx * dx
|
| 273 |
+
except:
|
| 274 |
+
pos = 0
|
| 275 |
+
|
| 276 |
+
pm = pm[pos]
|
| 277 |
|
| 278 |
print("infer: started")
|
| 279 |
|
| 280 |
p1 = pm["p"]
|
| 281 |
+
name = generate_random_string([12])+".png"
|
| 282 |
|
| 283 |
neg = pm["n"]
|
| 284 |
if neg != "":
|
|
|
|
| 291 |
|
| 292 |
if pm["i"] == None:
|
| 293 |
return None
|
| 294 |
+
out = Piper[32,32]([pm["i"]],[posi],[neg],[pm["m"]])
|
| 295 |
export_to_gif(out.frames[0],name,fps=fps)
|
| 296 |
return name
|
| 297 |
|
| 298 |
+
# @gpu(cache=True)
|
| 299 |
+
@cpu(cache=True,nopython=True,parallel=True)
|
| 300 |
+
# @cpu(cache=True)
|
| 301 |
+
def handle(i,m,p1,p2,result):
|
| 302 |
+
try:
|
| 303 |
+
tx = cuda.threadIdx.x
|
| 304 |
+
bx = cuda.blockIdx.x
|
| 305 |
+
dx = cuda.blockDim.x
|
| 306 |
+
pos = tx + bx * dx
|
| 307 |
+
except:
|
| 308 |
+
pos = 0
|
| 309 |
+
|
| 310 |
+
i=i[pos]
|
| 311 |
+
m=m[pos]
|
| 312 |
+
p1=p1[pos]
|
| 313 |
+
p2=p2[pos]
|
| 314 |
+
result=result[pos]
|
| 315 |
+
|
| 316 |
+
p1_en = translate([p1],["english"])
|
| 317 |
+
p2_en = translate([p2],["english"])
|
| 318 |
pm = {"p":p1_en,"n":p2_en,"m":m,"i":i}
|
| 319 |
ln = len(result)
|
| 320 |
rng = list(range(ln))
|
| 321 |
arr = [pm for _ in rng]
|
| 322 |
#with Pool(f'{ ln }:ppn=2', queue='productionQ', timelimit='5:00:00', workdir='.') as pool:
|
| 323 |
#return pool.map(infer,arr)
|
| 324 |
+
ret = infer[32+ln,32](arr)
|
| 325 |
return ret
|
| 326 |
|
| 327 |
+
# @gpu(cache=True)
|
| 328 |
+
# @cpu(cache=True,nopython=True,parallel=True)
|
| 329 |
+
@cpu(cache=True)
|
|
|
|
|
|
|
| 330 |
def ui():
|
| 331 |
+
try:
|
| 332 |
+
tx = cuda.threadIdx.x
|
| 333 |
+
bx = cuda.blockIdx.x
|
| 334 |
+
dx = cuda.blockDim.x
|
| 335 |
+
pos = tx + bx * dx
|
| 336 |
+
except:
|
| 337 |
+
pos = 0
|
| 338 |
|
| 339 |
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
|
| 340 |
with gr.Column(elem_id="col-container"):
|
|
|
|
| 384 |
|
| 385 |
gr.on(
|
| 386 |
triggers=[run_button.click, prompt.submit, prompt2.submit],
|
| 387 |
+
fn=handle,inputs=[[img],[motion],[prompt],[prompt2],[result]],outputs=result
|
| 388 |
)
|
| 389 |
demo.queue().launch()
|
| 390 |
|
| 391 |
+
# @gpu(cache=True)
|
| 392 |
+
# @cpu(cache=True,nopython=True,parallel=True)
|
| 393 |
+
@cpu(cache=True)
|
|
|
|
|
|
|
| 394 |
def pre():
|
| 395 |
+
try:
|
| 396 |
+
tx = cuda.threadIdx.x
|
| 397 |
+
bx = cuda.blockIdx.x
|
| 398 |
+
dx = cuda.blockDim.x
|
| 399 |
+
pos = tx + bx * dx
|
| 400 |
+
except:
|
| 401 |
+
pos = 0
|
| 402 |
|
| 403 |
pipe = AnimateDiffPipeline.from_pretrained(base, vae=vae, motion_adapter=adapter, torch_dtype=dtype).to(device)
|
| 404 |
pipe.scheduler = DDIMScheduler(
|
|
|
|
| 415 |
pipe.enable_free_init(method="butterworth", use_fast_sampling=fast)
|
| 416 |
|
| 417 |
# @gpu(cache=True)
|
| 418 |
+
# @cpu(cache=True,nopython=True,parallel=True)
|
| 419 |
+
@cpu(cache=True)
|
|
|
|
|
|
|
| 420 |
def entry():
|
| 421 |
+
try:
|
| 422 |
+
tx = cuda.threadIdx.x
|
| 423 |
+
bx = cuda.blockIdx.x
|
| 424 |
+
dx = cuda.blockDim.x
|
| 425 |
+
pos = tx + bx * dx
|
| 426 |
+
except:
|
| 427 |
+
pos = 0
|
| 428 |
+
|
| 429 |
os.chdir(os.path.abspath(os.path.dirname(__file__)))
|
| 430 |
mp.set_start_method("spawn", force=True)
|
| 431 |
+
pre()
|
| 432 |
+
ui()
|
| 433 |
|
| 434 |
# entry
|
| 435 |
|