Spaces:
Build error
Build error
| import os | |
| from pathlib import Path | |
| import torch.nn.functional as F | |
| from omegaconf import OmegaConf | |
| import torch | |
| import torchaudio | |
| from tqdm.auto import tqdm | |
| from dataset import DiffusionCollater, DiffusionDataset | |
| from ldm.util import instantiate_from_config | |
| from ttts.utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule | |
| from ttts.utils.utils import clean_checkpoints, plot_spectrogram_to_numpy, summarize | |
| from accelerate import Accelerator | |
| from vocos import Vocos | |
| from ttts.AA_diffusion.cldm.cldm import denormalize_tacotron_mel | |
| from torch.utils.data import DataLoader | |
| from torch.optim import AdamW | |
| from datetime import datetime | |
| from ttts.utils.infer_utils import load_model | |
| # import utils | |
| from torch.utils.tensorboard import SummaryWriter | |
| def count_parameters(model): | |
| return sum(p.numel() for p in model.parameters() if p.requires_grad) | |
| def get_grad_norm(model): | |
| total_norm = 0 | |
| for name,p in model.named_parameters(): | |
| try: | |
| param_norm = p.grad.data.norm(2) | |
| total_norm += param_norm.item() ** 2 | |
| except: | |
| print(name) | |
| total_norm = total_norm ** (1. / 2) | |
| return total_norm | |
| def cycle(dl): | |
| while True: | |
| for data in dl: | |
| yield data | |
| def create_model(config_path): | |
| config = OmegaConf.load(config_path) | |
| model = instantiate_from_config(config.model).cpu() | |
| print(f'Loaded model config from [{config_path}]') | |
| return model | |
| def get_state_dict(d): | |
| return d.get('state_dict', d) | |
| def load_state_dict(ckpt_path, location='cpu'): | |
| _, extension = os.path.splitext(ckpt_path) | |
| if extension.lower() == ".safetensors": | |
| import safetensors.torch | |
| state_dict = safetensors.torch.load_file(ckpt_path, device=location) | |
| else: | |
| state_dict = get_state_dict(torch.load(ckpt_path, map_location=torch.device(location))) | |
| state_dict = get_state_dict(state_dict) | |
| print(f'Loaded state_dict from [{ckpt_path}]') | |
| return state_dict | |
| class Trainer(object): | |
| def __init__( | |
| self, | |
| cfg_path = 'ttts/AA_diffusion/config.yaml', | |
| ): | |
| super().__init__() | |
| self.cfg = OmegaConf.load(cfg_path) | |
| self.accelerator = Accelerator() | |
| # model | |
| self.vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz") | |
| self.gpt = load_model('gpt',self.cfg['dataset']['gpt_path'],'ttts/gpt/config.json','cuda') | |
| self.model = create_model(cfg_path) | |
| self.mel_length_compression = 4 | |
| print("model params:", count_parameters(self.model)) | |
| # sampling and training hyperparameters | |
| self.save_and_sample_every = self.cfg['train']['save_and_sample_every'] | |
| self.gradient_accumulate_every = self.cfg['train']['gradient_accumulate_every'] | |
| self.train_num_steps = self.cfg['train']['train_num_steps'] | |
| # dataset and dataloader | |
| self.dataset = DiffusionDataset(self.cfg) | |
| dl = DataLoader(self.dataset, **self.cfg['dataloader'], collate_fn=DiffusionCollater()) | |
| dl = self.accelerator.prepare(dl) | |
| self.dl = cycle(dl) | |
| # optimizer | |
| self.opt = AdamW(self.model.parameters(), lr = self.cfg['train']['train_lr'], betas = self.cfg['train']['adam_betas']) | |
| # for logging results in a folder periodically | |
| if self.accelerator.is_main_process: | |
| # eval_ds = TestDataset(self.cfg['data']['val_files'], self.cfg, self.vocos) | |
| # self.eval_dl = DataLoader(eval_ds, batch_size = 1, shuffle = False, num_workers = self.cfg['train']['num_workers']) | |
| # self.eval_dl = iter(cycle(self.eval_dl)) | |
| now = datetime.now() | |
| self.logs_folder = Path(self.cfg['train']['logs_folder']+'/'+now.strftime("%Y-%m-%d-%H-%M-%S")) | |
| self.logs_folder.mkdir(exist_ok = True, parents=True) | |
| # step counter state | |
| self.step = 0 | |
| # prepare model, dataloader, optimizer with accelerator | |
| self.model, self.opt = self.accelerator.prepare(self.model, self.opt) | |
| def device(self): | |
| return self.accelerator.device | |
| def save(self, milestone): | |
| if not self.accelerator.is_local_main_process: | |
| return | |
| data = { | |
| 'step': self.step, | |
| 'model': self.accelerator.get_state_dict(self.model), | |
| } | |
| torch.save(data, str(self.logs_folder / f'model-{milestone}.pt')) | |
| def load(self, model_path): | |
| accelerator = self.accelerator | |
| device = accelerator.device | |
| data = torch.load(model_path, map_location=device) | |
| self.step = data['step'] | |
| saved_state_dict = data['model'] | |
| model = self.accelerator.unwrap_model(self.model) | |
| # del saved_state_dict['cond_stage_model.visual.positional_embedding'] | |
| # del saved_state_dict['cond_stage_model.visual.conv1.weight'] | |
| model.load_state_dict(saved_state_dict) | |
| def train(self): | |
| # print(1) | |
| accelerator = self.accelerator | |
| device = accelerator.device | |
| if accelerator.is_main_process: | |
| writer = SummaryWriter(log_dir=self.logs_folder) | |
| writer_eval = SummaryWriter(log_dir=os.path.join(self.logs_folder, "eval")) | |
| with tqdm(initial = self.step, total = self.train_num_steps, disable = not accelerator.is_main_process) as pbar: | |
| while self.step < self.train_num_steps: | |
| # with torch.autograd.detect_anomaly(): | |
| for _ in range(self.gradient_accumulate_every): | |
| data = next(self.dl) | |
| data = {k: v.to(self.device) for k, v in data.items()} | |
| with torch.no_grad(): | |
| latent = self.gpt(data['padded_mel_refer'], data['padded_text'], | |
| torch.tensor([data['padded_text'].shape[-1]], device=device), data['padded_mel_code'], | |
| torch.tensor([data['padded_mel_code'].shape[-1]*self.mel_length_compression], device=device), | |
| return_latent=True, clip_inputs=False).transpose(1,2) | |
| latent = F.interpolate(latent, size=data['padded_mel'].shape[-1], mode='nearest') | |
| data_ = dict(jpg=data['padded_mel'], txt=data['padded_mel_refer'], hint=latent) | |
| with self.accelerator.autocast(): | |
| loss = accelerator.unwrap_model(self.model).training_step(data_) | |
| model = accelerator.unwrap_model(self.model) | |
| unused_params =[] | |
| # unused_params.extend(list(model.refer_model.out.parameters())) | |
| unused_params.extend(list(model.cond_stage_model.visual.proj)) | |
| # unused_params.extend(list(model.refer_model.output_blocks.parameters())) | |
| # unused_params.extend(list(model.refer_model.output_blocks.parameters())) | |
| unused_params.extend(list(model.unconditioned_embedding)) | |
| unused_params.extend(list(model.unconditioned_cat_embedding)) | |
| extraneous_addition = 0 | |
| for p in unused_params: | |
| extraneous_addition = extraneous_addition + p.mean() | |
| loss = loss + 0*extraneous_addition | |
| loss = loss / self.gradient_accumulate_every | |
| self.accelerator.backward(loss) | |
| grad_norm = get_grad_norm(self.model) | |
| accelerator.clip_grad_norm_(self.model.parameters(), 1.0) | |
| pbar.set_description(f'loss: {loss:.4f}') | |
| accelerator.wait_for_everyone() | |
| if (self.step+1)%self.gradient_accumulate_every==0: | |
| self.opt.step() | |
| self.opt.zero_grad() | |
| accelerator.wait_for_everyone() | |
| ############################logging############################################# | |
| if accelerator.is_main_process and self.step % 100 == 0: | |
| scalar_dict = {"loss/diff": loss, "loss/grad": grad_norm} | |
| summarize( | |
| writer=writer, | |
| global_step=self.step, | |
| scalars=scalar_dict | |
| ) | |
| if accelerator.is_main_process: | |
| if self.step % self.save_and_sample_every == 0: | |
| data = data | |
| data = {k: v.to(self.device) for k, v in data.items()} | |
| with torch.no_grad(): | |
| latent = self.gpt(data['padded_mel_refer'], data['padded_text'], | |
| torch.tensor([data['padded_text'].shape[-1]], device=device), data['padded_mel_code'], | |
| torch.tensor([data['padded_mel_code'].shape[-1]*self.mel_length_compression], device=device), | |
| return_latent=True, clip_inputs=False).transpose(1,2) | |
| latent = F.interpolate(latent, size=data['padded_mel'].shape[-1], mode='nearest') | |
| data_ = dict(jpg=data['padded_mel'], txt=data['padded_mel_refer'], hint=latent) | |
| with torch.no_grad(): | |
| model = accelerator.unwrap_model(self.model) | |
| model.eval() | |
| milestone = self.step // self.save_and_sample_every | |
| log = model.log_images(data_) | |
| mel = log['samples'].detach().cpu() | |
| mel = denormalize_tacotron_mel(mel) | |
| model.train() | |
| gen = self.vocos.decode(mel) | |
| torchaudio.save(str(self.logs_folder / f'sample-{milestone}.wav'), gen, 24000) | |
| audio_dict = {} | |
| audio_dict.update({ | |
| f"gen/audio": gen, | |
| }) | |
| image_dict = { | |
| f"gt/mel": plot_spectrogram_to_numpy(data['padded_mel'][0, :, :].detach().unsqueeze(-1).cpu()), | |
| f"gen/mel": plot_spectrogram_to_numpy(mel[0, :, :].detach().unsqueeze(-1).cpu()), | |
| } | |
| summarize( | |
| writer=writer_eval, | |
| global_step=self.step, | |
| audios=audio_dict, | |
| images=image_dict, | |
| audio_sampling_rate=24000 | |
| ) | |
| keep_ckpts = self.cfg['train']['keep_ckpts'] | |
| if keep_ckpts > 0: | |
| clean_checkpoints(path_to_models=self.logs_folder, n_ckpts_to_keep=keep_ckpts, sort_by_time=True) | |
| self.save(milestone) | |
| self.step += 1 | |
| pbar.update(1) | |
| accelerator.print('training complete') | |
| # example | |
| if __name__ == '__main__': | |
| trainer = Trainer() | |
| # trainer.load('/home/hyc/tortoise_plus_zh/ttts/AA_diffusion/logs/2023-12-30-18-46-48/model-121.pt') | |
| trainer.train() | |