Spaces:
Build error
Build error
| from ttts.diffusion.ldm.modules.diffusionmodules.util import ( | |
| conv_nd, | |
| linear, | |
| normalization, | |
| zero_module, | |
| timestep_embedding, | |
| ) | |
| from ttts.diffusion.ldm.modules.attention import SpatialTransformer | |
| from ttts.diffusion.ldm.modules.diffusionmodules.openaimodel import TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock, Upsample, convert_module_to_f16, convert_module_to_f32 | |
| from ttts.diffusion.ldm.util import exists | |
| import torch as th | |
| from einops import rearrange, repeat | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch import autocast | |
| from ttts.diffusion.cldm.cond_emb import CLIP | |
| from ttts.utils.utils import normalization, AttentionBlock | |
| def count_parameters(model): | |
| return sum(p.numel() for p in model.parameters() if p.requires_grad) | |
| class BaseModel(nn.Module): | |
| """ | |
| The full UNet model with attention and timestep embedding. | |
| :param in_channels: channels in the input Tensor. | |
| :param model_channels: base channel count for the model. | |
| :param out_channels: channels in the output Tensor. | |
| :param num_res_blocks: number of residual blocks per downsample. | |
| :param attention_resolutions: a collection of downsample rates at which | |
| attention will take place. May be a set, list, or tuple. | |
| For example, if this contains 4, then at 4x downsampling, attention | |
| will be used. | |
| :param dropout: the dropout probability. | |
| :param channel_mult: channel multiplier for each level of the UNet. | |
| :param conv_resample: if True, use learned convolutions for upsampling and | |
| downsampling. | |
| :param dims: determines if the signal is 1D, 2D, or 3D. | |
| :param num_classes: if specified (as an int), then this model will be | |
| class-conditional with `num_classes` classes. | |
| :param use_checkpoint: use gradient checkpointing to reduce memory usage. | |
| :param num_heads: the number of attention heads in each attention layer. | |
| :param num_heads_channels: if specified, ignore num_heads and instead use | |
| a fixed channel width per attention head. | |
| :param num_heads_upsample: works with num_heads to set a different number | |
| of heads for upsampling. Deprecated. | |
| :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. | |
| :param resblock_updown: use residual blocks for up/downsampling. | |
| :param use_new_attention_order: use a different attention pattern for potentially | |
| increased efficiency. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels, | |
| model_channels, | |
| out_channels, | |
| num_res_blocks, | |
| attention_resolutions, | |
| dropout=0, | |
| channel_mult=(1, 2, 4, 8), | |
| conv_resample=True, | |
| dims=1, | |
| num_classes=None, | |
| use_checkpoint=False, | |
| use_fp16=False, | |
| num_heads=-1, | |
| num_head_channels=-1, | |
| num_heads_upsample=-1, | |
| use_scale_shift_norm=False, | |
| resblock_updown=False, | |
| use_new_attention_order=False, | |
| use_spatial_transformer=False, # custom transformer support | |
| transformer_depth=1, # custom transformer support | |
| context_dim=None, # custom transformer support | |
| n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model | |
| legacy=True, | |
| disable_self_attentions=None, | |
| num_attention_blocks=None, | |
| disable_middle_self_attn=False, | |
| use_linear_in_transformer=False, | |
| ): | |
| super().__init__() | |
| if use_spatial_transformer: | |
| assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' | |
| if context_dim is not None: | |
| assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' | |
| from omegaconf.listconfig import ListConfig | |
| if type(context_dim) == ListConfig: | |
| context_dim = list(context_dim) | |
| if num_heads_upsample == -1: | |
| num_heads_upsample = num_heads | |
| if num_heads == -1: | |
| assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' | |
| if num_head_channels == -1: | |
| assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' | |
| self.in_channels = in_channels | |
| self.model_channels = model_channels | |
| self.out_channels = out_channels | |
| if isinstance(num_res_blocks, int): | |
| self.num_res_blocks = len(channel_mult) * [num_res_blocks] | |
| else: | |
| if len(num_res_blocks) != len(channel_mult): | |
| raise ValueError("provide num_res_blocks either as an int (globally constant) or " | |
| "as a list/tuple (per-level) with the same length as channel_mult") | |
| self.num_res_blocks = num_res_blocks | |
| if disable_self_attentions is not None: | |
| # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not | |
| assert len(disable_self_attentions) == len(channel_mult) | |
| if num_attention_blocks is not None: | |
| assert len(num_attention_blocks) == len(self.num_res_blocks) | |
| assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) | |
| print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " | |
| f"This option has LESS priority than attention_resolutions {attention_resolutions}, " | |
| f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " | |
| f"attention will still not be set.") | |
| self.attention_resolutions = attention_resolutions | |
| self.dropout = dropout | |
| self.channel_mult = channel_mult | |
| self.conv_resample = conv_resample | |
| self.num_classes = num_classes | |
| self.use_checkpoint = use_checkpoint | |
| self.dtype = th.float16 if use_fp16 else th.float32 | |
| self.num_heads = num_heads | |
| self.num_head_channels = num_head_channels | |
| self.num_heads_upsample = num_heads_upsample | |
| self.predict_codebook_ids = n_embed is not None | |
| time_embed_dim = model_channels * 4 | |
| self.time_embed = nn.Sequential( | |
| linear(model_channels, time_embed_dim), | |
| nn.SiLU(), | |
| linear(time_embed_dim, time_embed_dim), | |
| ) | |
| if self.num_classes is not None: | |
| if isinstance(self.num_classes, int): | |
| self.label_emb = nn.Embedding(num_classes, time_embed_dim) | |
| elif self.num_classes == "continuous": | |
| print("setting up linear c_adm embedding layer") | |
| self.label_emb = nn.Linear(1, time_embed_dim) | |
| else: | |
| raise ValueError() | |
| self.blocks = nn.ModuleList( | |
| [ | |
| TimestepEmbedSequential( | |
| conv_nd(dims, in_channels, model_channels, 3, padding=1) | |
| ) | |
| ] | |
| ) | |
| self._feature_size = model_channels | |
| input_block_chans = [model_channels] | |
| ch = model_channels | |
| ds = 1 | |
| for level, mult in enumerate(channel_mult): | |
| for nr in range(self.num_res_blocks[level]): | |
| layers = [ | |
| ResBlock( | |
| ch, | |
| time_embed_dim, | |
| dropout, | |
| out_channels=mult * model_channels, | |
| dims=dims, | |
| use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| ) | |
| ] | |
| ch = mult * model_channels | |
| if ds in attention_resolutions: | |
| if num_head_channels == -1: | |
| dim_head = ch // num_heads | |
| else: | |
| num_heads = ch // num_head_channels | |
| dim_head = num_head_channels | |
| if legacy: | |
| #num_heads = 1 | |
| dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
| if exists(disable_self_attentions): | |
| disabled_sa = disable_self_attentions[level] | |
| else: | |
| disabled_sa = False | |
| if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: | |
| layers.append( | |
| AttentionBlock( | |
| ch, | |
| use_checkpoint=use_checkpoint, | |
| num_heads=num_heads, | |
| num_head_channels=dim_head, | |
| use_new_attention_order=use_new_attention_order, | |
| ) if not use_spatial_transformer else SpatialTransformer( | |
| ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, | |
| disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, | |
| use_checkpoint=use_checkpoint | |
| ) | |
| ) | |
| self.blocks.append(TimestepEmbedSequential(*layers)) | |
| self._feature_size += ch | |
| input_block_chans.append(ch) | |
| # if level != len(channel_mult) - 1: | |
| out_ch = ch | |
| self.blocks.append( | |
| TimestepEmbedSequential( | |
| ResBlock( | |
| ch, | |
| time_embed_dim, | |
| dropout, | |
| out_channels=out_ch, | |
| dims=dims, | |
| use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| ) | |
| ) | |
| ) | |
| ch = out_ch | |
| input_block_chans.append(ch) | |
| # ds *= 2 | |
| self._feature_size += ch | |
| self.out = nn.Sequential( | |
| normalization(ch), | |
| nn.SiLU(), | |
| zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), | |
| ) | |
| self.hint_converter = nn.Conv1d(1024,model_channels,3,padding=1) | |
| def convert_to_fp16(self): | |
| """ | |
| Convert the torso of the model to float16. | |
| """ | |
| self.blocks.apply(convert_module_to_f16) | |
| # self.input_blocks.apply(convert_module_to_f16) | |
| # self.middle_block.apply(convert_module_to_f16) | |
| # self.output_blocks.apply(convert_module_to_f16) | |
| def convert_to_fp32(self): | |
| """ | |
| Convert the torso of the model to float32. | |
| """ | |
| self.blocks.apply(convert_module_to_f32) | |
| # self.input_blocks.apply(convert_module_to_f32) | |
| # self.middle_block.apply(convert_module_to_f32) | |
| # self.output_blocks.apply(convert_module_to_f32) | |
| def forward(self, x, timesteps=None, context=None, hint=None, control=None, **kwargs): | |
| hs = [] | |
| t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
| emb = self.time_embed(t_emb) | |
| # guided_hint = self.input_hint_block(hint, emb, context) | |
| hint = self.hint_converter(hint) | |
| # context = self.context_proj(context).unsqueeze(-1) | |
| # scale, shift = torch.chunk(context, 2, dim = 1) | |
| # hint = hint*(1+scale)+shift | |
| h = x.type(self.dtype) | |
| flag=0 | |
| for module in self.blocks: | |
| if flag==0: | |
| h = module(h, emb, context, control.pop(0)) | |
| h += hint | |
| flag=1 | |
| else: | |
| h = module(h, emb, context, control.pop(0)) | |
| hs.append(h) | |
| h = h.type(x.dtype) | |
| return self.out(h) | |
| class ReferenceNet(BaseModel): | |
| def forward(self, x, timesteps=None, context=None, **kwargs): | |
| hs = [] | |
| control = [] | |
| t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
| emb = self.time_embed(t_emb) | |
| h = x.type(self.dtype) | |
| for module in self.blocks: | |
| h,refer = module(h, emb, context,return_refer=True) | |
| hs.append(h) | |
| control.append(refer) | |
| h = h.type(x.dtype) | |
| # h = self.out(h) | |
| return control | |
| TACOTRON_MEL_MAX = 5.5451774444795624753378569716654 | |
| TACOTRON_MEL_MIN = -16.118095650958319788125940182791 | |
| # TACOTRON_MEL_MIN = -11.512925464970228420089957273422 | |
| CVEC_MAX = 5.5451774444795624753378569716654 | |
| CVEC_MIN = -5.5451774444795624753378569716654 | |
| def denormalize_tacotron_mel(norm_mel): | |
| return norm_mel/0.18215 | |
| def normalize_tacotron_mel(mel): | |
| mel = torch.clamp(mel, min=-TACOTRON_MEL_MAX) | |
| return mel*0.18215 | |
| def denormalize_cvec(norm_mel): | |
| return norm_mel/0.11111 | |
| def normalize_cvec(mel): | |
| return mel*0.11111 | |
| class AA_diffusion(nn.Module): | |
| def __init__(self, config, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| self.refer_enc = CLIP(**config['clip']) | |
| self.refer_model = ReferenceNet(**config['refer_diffusion']) | |
| self.base_model = BaseModel(**config['base_diffusion']) | |
| print("base model params:", count_parameters(self.base_model)) | |
| self.unconditioned_percentage = 0.1 | |
| # self.control_model = instantiate_from_config(control_stage_config) | |
| # self.refer_model = instantiate_from_config(refer_config) | |
| self.control_scales = [1.0] * 13 | |
| # self.unconditioned_embedding = nn.Parameter(torch.randn(1,100,1)) | |
| self.unconditioned_cat_embedding = nn.Parameter(torch.randn(1,1024,1)) | |
| def get_uncond_batch(self, code_emb): | |
| unconditioned_batches = torch.zeros((code_emb.shape[0], 1, 1), device=code_emb.device) | |
| # Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance. | |
| if self.training and self.unconditioned_percentage > 0: | |
| unconditioned_batches = torch.rand((code_emb.shape[0], 1, 1), | |
| device=code_emb.device) < self.unconditioned_percentage | |
| code_emb = torch.where(unconditioned_batches, self.unconditioned_cat_embedding.repeat(code_emb.shape[0], 1, 1), | |
| code_emb) | |
| return code_emb | |
| def forward(self, x, t, hint, refer, conditioning_free=False): | |
| if conditioning_free: | |
| hint = self.unconditioned_cat_embedding.repeat(x.shape[0], 1, x.shape[-1]) | |
| else: | |
| if self.training: | |
| hint = self.get_uncond_batch(hint) | |
| hint = F.interpolate(hint, size=x.shape[-1], mode='nearest') | |
| refer_cross = self.refer_enc(refer) | |
| refer_self = self.refer_model(refer, timesteps = t, context = refer_cross) | |
| eps = self.base_model(x, timesteps=t, context=refer_cross, hint=hint, control=refer_self) | |
| return eps | |