Spaces:
Build error
Build error
| from typing import List | |
| import torch | |
| import torchaudio | |
| from encodec import EncodecModel | |
| from torch import nn | |
| from ttts.vocoder.modules import safe_log | |
| class FeatureExtractor(nn.Module): | |
| """Base class for feature extractors.""" | |
| def forward(self, audio: torch.Tensor, **kwargs) -> torch.Tensor: | |
| """ | |
| Extract features from the given audio. | |
| Args: | |
| audio (Tensor): Input audio waveform. | |
| Returns: | |
| Tensor: Extracted features of shape (B, C, L), where B is the batch size, | |
| C denotes output features, and L is the sequence length. | |
| """ | |
| raise NotImplementedError("Subclasses must implement the forward method.") | |
| class MelSpectrogramFeatures(FeatureExtractor): | |
| def __init__(self, sample_rate=24000, n_fft=1024, hop_length=256, n_mels=100, padding="center"): | |
| super().__init__() | |
| if padding not in ["center", "same"]: | |
| raise ValueError("Padding must be 'center' or 'same'.") | |
| self.padding = padding | |
| self.mel_spec = torchaudio.transforms.MelSpectrogram( | |
| sample_rate=sample_rate, | |
| n_fft=n_fft, | |
| hop_length=hop_length, | |
| n_mels=n_mels, | |
| center=padding == "center", | |
| power=1, | |
| ) | |
| def forward(self, audio, **kwargs): | |
| if self.padding == "same": | |
| pad = self.mel_spec.win_length - self.mel_spec.hop_length | |
| audio = torch.nn.functional.pad(audio, (pad // 2, pad // 2), mode="reflect") | |
| mel = self.mel_spec(audio) | |
| features = safe_log(mel) | |
| return features | |
| class EncodecFeatures(FeatureExtractor): | |
| def __init__( | |
| self, | |
| encodec_model: str = "encodec_24khz", | |
| bandwidths: List[float] = [1.5, 3.0, 6.0, 12.0], | |
| train_codebooks: bool = False, | |
| ): | |
| super().__init__() | |
| if encodec_model == "encodec_24khz": | |
| encodec = EncodecModel.encodec_model_24khz | |
| elif encodec_model == "encodec_48khz": | |
| encodec = EncodecModel.encodec_model_48khz | |
| else: | |
| raise ValueError( | |
| f"Unsupported encodec_model: {encodec_model}. Supported options are 'encodec_24khz' and 'encodec_48khz'." | |
| ) | |
| self.encodec = encodec(pretrained=True) | |
| for param in self.encodec.parameters(): | |
| param.requires_grad = False | |
| self.num_q = self.encodec.quantizer.get_num_quantizers_for_bandwidth( | |
| self.encodec.frame_rate, bandwidth=max(bandwidths) | |
| ) | |
| codebook_weights = torch.cat([vq.codebook for vq in self.encodec.quantizer.vq.layers[: self.num_q]], dim=0) | |
| self.codebook_weights = torch.nn.Parameter(codebook_weights, requires_grad=train_codebooks) | |
| self.bandwidths = bandwidths | |
| def get_encodec_codes(self, audio): | |
| audio = audio.unsqueeze(1) | |
| emb = self.encodec.encoder(audio) | |
| codes = self.encodec.quantizer.encode(emb, self.encodec.frame_rate, self.encodec.bandwidth) | |
| return codes | |
| def forward(self, audio: torch.Tensor, bandwidth_id: torch.Tensor): | |
| self.encodec.eval() # Force eval mode as Pytorch Lightning automatically sets child modules to training mode | |
| self.encodec.set_target_bandwidth(self.bandwidths[bandwidth_id]) | |
| codes = self.get_encodec_codes(audio) | |
| # Instead of summing in the loop, it stores subsequent VQ dictionaries in a single `self.codebook_weights` | |
| # with offsets given by the number of bins, and finally summed in a vectorized operation. | |
| offsets = torch.arange( | |
| 0, self.encodec.quantizer.bins * len(codes), self.encodec.quantizer.bins, device=audio.device | |
| ) | |
| embeddings_idxs = codes + offsets.view(-1, 1, 1) | |
| features = torch.nn.functional.embedding(embeddings_idxs, self.codebook_weights).sum(dim=0) | |
| return features.transpose(1, 2) |