Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
|
| 3 |
+
from autogluon.tabular import TabularPredictor
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
if __name__ == '__main__':
|
| 7 |
+
train_data = pd.read_csv('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
|
| 8 |
+
subsample_size = 5000
|
| 9 |
+
if subsample_size is not None and subsample_size < len(train_data):
|
| 10 |
+
train_data = train_data.sample(n=subsample_size, random_state=0)
|
| 11 |
+
test_data = pd.read_csv('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
|
| 12 |
+
|
| 13 |
+
tabpfnmix_default = {
|
| 14 |
+
"model_path_classifier": "autogluon/tabpfn-mix-1.0-classifier",
|
| 15 |
+
"model_path_regressor": "autogluon/tabpfn-mix-1.0-regressor",
|
| 16 |
+
"n_ensembles": 1,
|
| 17 |
+
"max_epochs": 30,
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
hyperparameters = {
|
| 21 |
+
"TABPFNMIX": [
|
| 22 |
+
tabpfnmix_default,
|
| 23 |
+
],
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
label = "class"
|
| 27 |
+
|
| 28 |
+
predictor = TabularPredictor(label=label)
|
| 29 |
+
predictor = predictor.fit(
|
| 30 |
+
train_data=train_data,
|
| 31 |
+
hyperparameters=hyperparameters,
|
| 32 |
+
verbosity=3,
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
predictor.leaderboard(test_data, display=True)
|